CH8. 신용카드 거래에 대한 그래프 분석(교수님)

graph
Author

김보람

Published

April 28, 2023

imports

import numpy as np
import pandas as pd
import networkx as nx
import sklearn

# split 
from sklearn.model_selection import train_test_split

# embedding 
from node2vec import Node2Vec
from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder

# models 
from sklearn.ensemble import RandomForestClassifier 

# 평가 
from sklearn import metrics 
def build_graph_bipartite(df_input, graph_type=nx.Graph()):
    df=df_input.copy()
    mapping={x:node_id for node_id, x in enumerate(set(df["cc_num"].values.tolist()+\
                                                      df["merchant"].values.tolist()))}
    
    df["from"]=df["cc_num"].apply(lambda x:mapping[x])  #엣지의 출발점
    df["to"]=df["merchant"].apply(lambda x:mapping[x])  #엣지의 도착점
    
    df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from','to']).agg({"is_fraud":"sum","amt":"sum"}).reset_index()
    df["is_fraud"]=df["is_fraud"].apply(lambda x:1 if x>0 else 0)
    
    G=nx.from_edgelist(df[["from","to"]].values, create_using=graph_type)
    
    nx.set_edge_attributes(G, {(int(x["from"]),int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label")  #엣지 속성 설정,각 속성의 사기 여부부 
    
    nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["amt"] for idx,x in df[["from","to","amt"]].iterrows()}, "weight") # 엣지 속성 설정, 각 엣지의 거래 금액

    return G

def down_sample_textbook(df):
    df = df[df["is_fraud"]==0].sample(frac=0.20, random_state=42).append(df[df["is_fraud"] == 1])
    df_majority = df[df.is_fraud==0]
    df_minority = df[df.is_fraud==1]
    df_maj_dowsampled = sklearn.utils.resample(df_majority, n_samples=len(df_minority), random_state=42)
    df_downsampled = pd.concat([df_minority, df_maj_dowsampled])
    return df_downsampled

def split(Graph,test_size=0.20,random_state=42):
    edg = list(range(len(Graph.edges))) 
    edg_att = list(nx.get_edge_attributes(Graph, "label").values())
    return train_test_split(edg,edg_att,test_size=test_size,random_state=random_state) 

def embedding(Graph):
    _edgs = list(Graph.edges)
    _train_edges, _test_edges, y, yy = split(Graph)
    _train_graph = Graph.edge_subgraph([_edgs[x] for x in _train_edges]).copy()
    _train_graph.add_nodes_from(list(set(Graph.nodes) - set(_train_graph.nodes)))
    _embedded = AverageEmbedder(Node2Vec(_train_graph, weight_key='weight').fit(window=10).wv)
    X = [_embedded[str(_edgs[x][0]), str(_edgs[x][1])] for x in _train_edges]
    XX = [_embedded[str(_edgs[x][0]), str(_edgs[x][1])] for x in _test_edges]
    return X,XX,y,yy 

def evaluate(lrnr,XX,yy):
    yyhat = lrnr.predict(XX)
    df = pd.DataFrame({'pre':[sklearn.metrics.precision_score(yy,yyhat)], 
                  'rec':[sklearn.metrics.recall_score(yy,yyhat)],
                  'f1':[sklearn.metrics.f1_score(yy,yyhat)]})
    return df 

def anal(df,n_estimators=10):
    Graph = build_graph_bipartite(df)
    X,XX,y,yy = embedding(Graph)
    lrnr = RandomForestClassifier(n_estimators=n_estimators, random_state=42) 
    lrnr.fit(X,y)
    return lrnr, XX,yy, evaluate(lrnr,XX,yy)

def our_sampling1(df):
    cus_list = set(df.query('is_fraud==1').cc_num.tolist())
    return df.query("cc_num in @ cus_list")

data1

read and define data

df = pd.read_csv("~/Desktop/fraudTrain.csv")
Unnamed: 0 trans_date_trans_time cc_num merchant category amt first last gender street ... lat long city_pop job dob trans_num unix_time merch_lat merch_long is_fraud
669418 669418 2019-10-12 18:21 4.089100e+18 fraud_Haley, Jewess and Bechtelar shopping_pos 7.53 Debra Stark F 686 Linda Rest ... 32.3836 -94.8653 24536 Multimedia programmer 1983-10-14 d313353fa30233e5fab5468e852d22fc 1350066071 32.202008 -94.371865 0
32567 32567 2019-01-20 13:06 4.247920e+12 fraud_Turner LLC travel 3.79 Judith Moss F 46297 Benjamin Plains Suite 703 ... 39.5370 -83.4550 22305 Television floor manager 1939-03-09 88c65b4e1585934d578511e627fe3589 1327064760 39.156673 -82.930503 0
156587 156587 2019-03-24 18:09 4.026220e+12 fraud_Klein Group entertainment 59.07 Debbie Payne F 204 Ashley Neck Apt. 169 ... 41.5224 -71.9934 4720 Broadcast presenter 1977-05-18 3bd9ede04b5c093143d5e5292940b670 1332612553 41.657152 -72.595751 0
1020243 1020243 2020-02-25 15:12 4.957920e+12 fraud_Monahan-Morar personal_care 25.58 Alan Parsons M 0547 Russell Ford Suite 574 ... 39.6171 -102.4776 207 Network engineer 1955-12-04 19e16ee7a01d229e750359098365e321 1361805120 39.080346 -103.213452 0
116272 116272 2019-03-06 23:19 4.178100e+15 fraud_Kozey-Kuhlman personal_care 84.96 Jill Flores F 639 Cruz Islands ... 41.9488 -86.4913 3104 Horticulturist, commercial 1981-03-29 a0c8641ca1f5d6e243ed5a2246e66176 1331075954 42.502065 -86.732664 0

5 rows × 23 columns

# df_downsampled = down_sample_textbook(df)

embedding

#G_down = build_graph_bipartite(df_downsampled)
# X,XX,y,yy = embedding(G_down)

learn

# lrnr = RandomForestClassifier(n_estimators=10, random_state=42) 
# lrnr.fit(X,y)

evaluate

# evaluate(lrnr,XX,yy)

data1 : 다른코드

lrnr1, XX_textbook, yy_texbook, results = anal(down_sample_textbook(df),n_estimators=100)
Generating walks (CPU: 1):   0%|          | 0/10 [00:00<?, ?it/s]Generating walks (CPU: 1): 100%|██████████| 10/10 [00:04<00:00,  2.42it/s]

data2

read and define data

df = pd.read_csv("~/Desktop/fraudTrain.csv")
lrnr2, _,_,_ = anal(down_sample_textbook(our_sampling1(df)),n_estimators=100)
Generating walks (CPU: 1):   0%|          | 0/10 [00:00<?, ?it/s]Generating walks (CPU: 1): 100%|██████████| 10/10 [00:03<00:00,  3.01it/s]

textbook vs proposed

yyhat_textbook = lrnr1.predict(XX_textbook)
yyhat_proposed = lrnr2.predict(XX_textbook)
evaluate(lrnr1, XX_textbook,yy_texbook)
pre rec f1
0 0.691654 0.761054 0.724696
evaluate(lrnr2, XX_textbook,yy_texbook)
pre rec f1
0 0.521797 0.335884 0.408691

appedix

김보람 ref - https://boram-coco.github.io/coco/posts/Graph%20Machine%20Learning/graph8.html

데이터: df - “~/Desktop/fraudTrain.csv” // (214520, 23) // 여기에서 214520은 전체에서 0.2%의 비율로 sampled 된 자료임

  • obs: 거래건수

  • var: cc_num(userid), store, 사기유무, 시간, 지역, amt, …

  • y: 사기유무

  • x:

목적: 사기거래 y==1을 찾는 것

교재의 방법

def build_graph_bipartite

1. df를 변형하여 from, to를 만든다. from은 출발점 / to는 도착점 

2. df에서 from,to,amt,is_fraud를 선택하여 (from,to)로 그룹핑 => is_fraud 와 amt 의 sum을 계산 

3. sum(is_fraud) > 0 일경우 is_fraud=1 로 설정 

4. 노드들의 집합= {고객1,고객2,...고객m, 상점1,상점2,...,상점k} => 1632의 노드가 있음 즉 m+k=1632 

5. 고객-상점 간의 사기가 있으면 엣지를 1로 설정, 그렇지 않으면 0으로 설정 

6. 엣지가1인 경우 amt를 weight로 설정 

main code

  1. df load

  2. df -> df_downsampled

  3. G = build_graph_bipartite(df_downsampled)

  4. tr_edg, test_edg, tr_lable, test_label = split(G)