import pandas as pd
import os
import math
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline
= 'gray'
default_edge_color = '#407cc9'
default_node_color = '#f5b042'
enhanced_node_color = '#cc2f04' enhanced_edge_color
ref
신용카드 거래에 대한 그래프 분석
신용카드 거래 그래프 생성
그래프에서 속성 및 커뮤니티 추출
사기 거래 분류에 지도 및 비지도 머신러닝 알고리즘 적용
샘플 = 0.4
import pandas as pd
= pd.read_csv("fraudTrain.csv")
df = df[df["is_fraud"]==0].sample(frac=0.40, random_state=42).append(df[df["is_fraud"] == 1])
df df.head()
Unnamed: 0 | trans_date_trans_time | cc_num | merchant | category | amt | first | last | gender | street | ... | lat | long | city_pop | job | dob | trans_num | unix_time | merch_lat | merch_long | is_fraud | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
669418 | 669418 | 2019-10-12 18:21 | 4.089100e+18 | fraud_Haley, Jewess and Bechtelar | shopping_pos | 7.53 | Debra | Stark | F | 686 Linda Rest | ... | 32.3836 | -94.8653 | 24536 | Multimedia programmer | 1983-10-14 | d313353fa30233e5fab5468e852d22fc | 1350066071 | 32.202008 | -94.371865 | 0 |
32567 | 32567 | 2019-01-20 13:06 | 4.247920e+12 | fraud_Turner LLC | travel | 3.79 | Judith | Moss | F | 46297 Benjamin Plains Suite 703 | ... | 39.5370 | -83.4550 | 22305 | Television floor manager | 1939-03-09 | 88c65b4e1585934d578511e627fe3589 | 1327064760 | 39.156673 | -82.930503 | 0 |
156587 | 156587 | 2019-03-24 18:09 | 4.026220e+12 | fraud_Klein Group | entertainment | 59.07 | Debbie | Payne | F | 204 Ashley Neck Apt. 169 | ... | 41.5224 | -71.9934 | 4720 | Broadcast presenter | 1977-05-18 | 3bd9ede04b5c093143d5e5292940b670 | 1332612553 | 41.657152 | -72.595751 | 0 |
1020243 | 1020243 | 2020-02-25 15:12 | 4.957920e+12 | fraud_Monahan-Morar | personal_care | 25.58 | Alan | Parsons | M | 0547 Russell Ford Suite 574 | ... | 39.6171 | -102.4776 | 207 | Network engineer | 1955-12-04 | 19e16ee7a01d229e750359098365e321 | 1361805120 | 39.080346 | -103.213452 | 0 |
116272 | 116272 | 2019-03-06 23:19 | 4.178100e+15 | fraud_Kozey-Kuhlman | personal_care | 84.96 | Jill | Flores | F | 639 Cruz Islands | ... | 41.9488 | -86.4913 | 3104 | Horticulturist, commercial | 1981-03-29 | a0c8641ca1f5d6e243ed5a2246e66176 | 1331075954 | 42.502065 | -86.732664 | 0 |
5 rows × 23 columns
"is_fraud"].value_counts() df[
0 417028
1 6006
Name: is_fraud, dtype: int64
"is_fraud"].value_counts()/len(df) df[
0 0.985803
1 0.014197
Name: is_fraud, dtype: float64
-
이분그래프
def build_graph_bipartite(df_input, graph_type=nx.Graph()):
=df_input.copy()
df={x:node_id for node_id, x in enumerate(set(df["cc_num"].values.tolist()+\
mapping"merchant"].values.tolist()))}
df[
"from"]=df["cc_num"].apply(lambda x:mapping[x]) #엣지의 출발점
df["to"]=df["merchant"].apply(lambda x:mapping[x]) #엣지의 도착점
df[
= df[['from', 'to', "amt", "is_fraud"]].groupby(['from','to']).agg({"is_fraud":"sum","amt":"sum"}).reset_index()
df "is_fraud"]=df["is_fraud"].apply(lambda x:1 if x>0 else 0)
df[
=nx.from_edgelist(df[["from","to"]].values, create_using=graph_type)
G
int(x["from"]),int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label") #엣지 속성 설정,각 속성의 사기 여부부
nx.set_edge_attributes(G, {(
int(x["from"]),int(x["to"])):x["amt"] for idx,x in df[["from","to","amt"]].iterrows()}, "weight") # 엣지 속성 설정, 각 엣지의 거래 금액
nx.set_edge_attributes(G,{(
return G
- 판매자, 고객에게 node 할당
= build_graph_bipartite(df, nx.Graph(name="Bipartite Undirect")) G_bu
- 무향 그래프 작성
-
삼분그래프
def build_graph_tripartite(df_input, graph_type=nx.Graph()):
=df_input.copy()
df={x:node_id for node_id, x in enumerate(set(df.index.values.tolist() + #set으로 중복 제거
mapping"cc_num"].values.tolist() +
df["merchant"].values.tolist()))}
df["in_node"]= df["cc_num"].apply(lambda x: mapping[x])
df["out_node"]=df["merchant"].apply(lambda x:mapping[x])
df[
=nx.from_edgelist([(x["in_node"], mapping[idx]) for idx, x in df.iterrows()] +\
G"out_node"], mapping[idx]) for idx, x in df.iterrows()], create_using=graph_type)
[(x[
"in_node"], mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, "label")
nx.set_edge_attributes(G,{(x[
"out_node"], mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, "label")
nx.set_edge_attributes(G,{(x[
"in_node"], mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")
nx.set_edge_attributes(G,{(x[
"out_node"], mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")
nx.set_edge_attributes(G,{(x[
return G
- 판매자, 고객, 거래에 노드 할당
= build_graph_tripartite(df, nx.Graph()) G_tu
for G in [G_bu, G_tu]:
print(nx.number_of_nodes(G))
1636
424670
사기 탐지를 위한 지도 및 비지도 임베딩
트랜잭션 간선으로 표기
각 간선을 올바른 클래스(사기 또는 정상)으로 분류
지도학습
from sklearn.utils import resample
= df[df.is_fraud==0]
df_majority = df[df.is_fraud==1]
df_minority
= resample(df_majority,
df_maj_dowsampled =len(df_minority),
n_samples=42)
random_state
= pd.concat([df_minority, df_maj_dowsampled])
df_downsampled
print(df_downsampled.is_fraud.value_counts())
= build_graph_bipartite(df_downsampled) G_down
1 6006
0 6006
Name: is_fraud, dtype: int64
무작위 언더샘플링 사용
소수 클래스(사기거래)이 샘플 수 와 일치시키려고 다수 클래스(정상거래)의 하위 샘플을 가져옴
데이터 불균형을 처리하기 위해서
from sklearn.model_selection import train_test_split
= train_test_split(list(range(len(G_down.edges))),
train_edges, test_edges, train_labels, test_labels list(nx.get_edge_attributes(G_down, "label").values()),
=0.20,
test_size=42) random_state
= list(G_down.edges)
edgs = G_down.edge_subgraph([edgs[x] for x in train_edges]).copy()
train_graph list(set(G_down.nodes) - set(train_graph.nodes))) train_graph.add_nodes_from(
- 데이터 8:2 비율로 학습 검증
pip install node2vec
Collecting node2vec
Downloading node2vec-0.4.6-py3-none-any.whl (7.0 kB)
Requirement already satisfied: joblib<2.0.0,>=1.1.0 in /home/coco/anaconda3/envs/py38/lib/python3.8/site-packages (from node2vec) (1.2.0)
Collecting gensim<5.0.0,>=4.1.2
Downloading gensim-4.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.5 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 26.5/26.5 MB 71.8 MB/s eta 0:00:0000:0100:01
Collecting tqdm<5.0.0,>=4.55.1
Downloading tqdm-4.65.0-py3-none-any.whl (77 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 77.1/77.1 kB 18.6 MB/s eta 0:00:00
Collecting networkx<3.0,>=2.5
Downloading networkx-2.8.8-py3-none-any.whl (2.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 90.4 MB/s eta 0:00:00
Requirement already satisfied: numpy<2.0.0,>=1.19.5 in /home/coco/anaconda3/envs/py38/lib/python3.8/site-packages (from node2vec) (1.24.2)
Requirement already satisfied: scipy>=1.7.0 in /home/coco/anaconda3/envs/py38/lib/python3.8/site-packages (from gensim<5.0.0,>=4.1.2->node2vec) (1.10.1)
Collecting smart-open>=1.8.1
Downloading smart_open-6.3.0-py3-none-any.whl (56 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.8/56.8 kB 13.6 MB/s eta 0:00:00
Installing collected packages: tqdm, smart-open, networkx, gensim, node2vec
Attempting uninstall: networkx
Found existing installation: networkx 3.0
Uninstalling networkx-3.0:
Successfully uninstalled networkx-3.0
Successfully installed gensim-4.3.1 networkx-2.8.8 node2vec-0.4.6 smart-open-6.3.0 tqdm-4.65.0
Note: you may need to restart the kernel to use updated packages.
from node2vec import Node2Vec
from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder
= Node2Vec(train_graph, weight_key='weight')
node2vec_train = node2vec_train.fit(window=10) model_train
Generating walks (CPU: 1): 100%|██████████| 10/10 [00:03<00:00, 2.62it/s]
- Node2Vec 알고리즘 사용해 특징 공간 구축
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
= [HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder]
classes for cl in classes:
= cl(keyed_vectors=model_train.wv)
embeddings_train # 벡터스페이스 상에 edge를 투영..
= [embeddings_train[str(edgs[x][0]), str(edgs[x][1])] for x in train_edges]
train_embeddings = [embeddings_train[str(edgs[x][0]), str(edgs[x][1])] for x in test_edges]
test_embeddings
= RandomForestClassifier(n_estimators=1000, random_state=42)
rf ;
rf.fit(train_embeddings, train_labels)
= rf.predict(test_embeddings)
y_pred print(cl)
print('Precision:', metrics.precision_score(test_labels, y_pred))
print('Recall:', metrics.recall_score(test_labels, y_pred))
print('F1-Score:', metrics.f1_score(test_labels, y_pred))
<class 'node2vec.edges.HadamardEmbedder'>
Precision: 0.7451737451737451
Recall: 0.16538131962296487
F1-Score: 0.270687237026648
<class 'node2vec.edges.AverageEmbedder'>
Precision: 0.691699604743083
Recall: 0.7497857754927164
F1-Score: 0.7195723684210527
<class 'node2vec.edges.WeightedL1Embedder'>
Precision: 0.7142857142857143
Recall: 0.029991431019708654
F1-Score: 0.0575657894736842
<class 'node2vec.edges.WeightedL2Embedder'>
Precision: 0.64
Recall: 0.027420736932305057
F1-Score: 0.052588331963845526
Node2Vec 알고리즘 사용해 각 Edge2Vec 알고리즘으로 특징 공간 생성
sklearn 파이썬 라이브러리의 RandomForestClassifier은 이전 단계에서 생성한 특징에 대해 학습
검증 테스트 위해 정밀도, 재현율, F1-score 성능 지표 측정
비지도학습
k-means 알고리즘 사용
지도학습과의 차이점은 특징 공간이 학습-검증 분할을 안함.
= Node2Vec(G_down, weight_key='weight')
nod2vec_unsup = nod2vec_unsup.fit(window=10) unsup_vals
Generating walks (CPU: 1): 100%|██████████| 10/10 [00:04<00:00, 2.32it/s]
- 다운샘플링 절차에 전체 그래프 알고리즘 계산
from sklearn.cluster import KMeans
= [HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder]
classes = [x for x in nx.get_edge_attributes(G_down, "label").values()]
true_labels
for cl in classes:
= cl(keyed_vectors=unsup_vals.wv)
embedding_edge
= [embedding_edge[str(x[0]), str(x[1])] for x in G_down.edges()]
embedding = KMeans(2, random_state=42).fit(embedding)
kmeans
= metrics.adjusted_mutual_info_score(true_labels, kmeans.labels_)
nmi = metrics.homogeneity_score(true_labels, kmeans.labels_)
ho = metrics.completeness_score(true_labels, kmeans.labels_)
co = metrics.v_measure_score(true_labels, kmeans.labels_)
vmeasure
print(cl)
print('NMI:', nmi)
print('Homogeneity:', ho)
print('Completeness:', co)
print('V-Measure:', vmeasure)
/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
warnings.warn(
/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
warnings.warn(
/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
warnings.warn(
/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
warnings.warn(
<class 'node2vec.edges.HadamardEmbedder'>
NMI: 0.04336246478827236
Homogeneity: 0.0383178531539123
Completeness: 0.05011351404941123
V-Measure: 0.043428985282038965
<class 'node2vec.edges.AverageEmbedder'>
NMI: 0.11206093720015026
Homogeneity: 0.10817496918905492
Completeness: 0.11635805522328385
V-Measure: 0.11211739628609738
<class 'node2vec.edges.WeightedL1Embedder'>
NMI: 0.16558117117175825
Homogeneity: 0.16557714823761863
Completeness: 0.16568764408717976
V-Measure: 0.16563237773404058
<class 'node2vec.edges.WeightedL2Embedder'>
NMI: 0.1349652677966787
Homogeneity: 0.1337881599748603
Completeness: 0.1362723387302234
V-Measure: 0.13501882386803338
-
NMI(Normalized Mutual Information)
두 개의 군집 결과 비교
0~1이며 1에 가까울수록 높은 성능
-
Homogeneity
하나의 실제 군집 내에서 같은 군집에 속한 샘플들이 군집화 결과에서 같은 군집에 속할 비율
1에 가까울수록 높은 성능
-
Completeness
하나의 예측 군집 내에서 같은 실제 군집에 속한 샘플들이 군집화 결과에서 같은 군집에 속할 비율
0~1이며 1에 가까울수록 높은 성능
-
V-measure
Homogeneity와 Completeness의 조화 평균
0~1이며 1에 가까울수록 높은 성능
비지도 학습에 이상치 탐지 방법
k-means/LOF/One-class SVM 등이 있다.. 한번 같이 해보자.
조금씩 다 커졌넹..
-
지도학습에서 정상거래에서 다운샘플링을 했는데
만약, 사기거래에서 업샘플링을 하게되면 어떻게 될까?