import os
import math
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline
default_edge_color = 'gray'
default_node_color = '#407cc9'
enhanced_node_color = '#f5b042'
enhanced_edge_color = '#cc2f04'df
import pandas as pd
df = pd.read_csv("fraudTrain.csv")
df = df[df["is_fraud"]==0].sample(frac=0.20, random_state=42).append(df[df["is_fraud"] == 1])
df.head()| Unnamed: 0 | trans_date_trans_time | cc_num | merchant | category | amt | first | last | gender | street | ... | lat | long | city_pop | job | dob | trans_num | unix_time | merch_lat | merch_long | is_fraud | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 669418 | 669418 | 2019-10-12 18:21 | 4.089100e+18 | fraud_Haley, Jewess and Bechtelar | shopping_pos | 7.53 | Debra | Stark | F | 686 Linda Rest | ... | 32.3836 | -94.8653 | 24536 | Multimedia programmer | 1983-10-14 | d313353fa30233e5fab5468e852d22fc | 1350066071 | 32.202008 | -94.371865 | 0 |
| 32567 | 32567 | 2019-01-20 13:06 | 4.247920e+12 | fraud_Turner LLC | travel | 3.79 | Judith | Moss | F | 46297 Benjamin Plains Suite 703 | ... | 39.5370 | -83.4550 | 22305 | Television floor manager | 1939-03-09 | 88c65b4e1585934d578511e627fe3589 | 1327064760 | 39.156673 | -82.930503 | 0 |
| 156587 | 156587 | 2019-03-24 18:09 | 4.026220e+12 | fraud_Klein Group | entertainment | 59.07 | Debbie | Payne | F | 204 Ashley Neck Apt. 169 | ... | 41.5224 | -71.9934 | 4720 | Broadcast presenter | 1977-05-18 | 3bd9ede04b5c093143d5e5292940b670 | 1332612553 | 41.657152 | -72.595751 | 0 |
| 1020243 | 1020243 | 2020-02-25 15:12 | 4.957920e+12 | fraud_Monahan-Morar | personal_care | 25.58 | Alan | Parsons | M | 0547 Russell Ford Suite 574 | ... | 39.6171 | -102.4776 | 207 | Network engineer | 1955-12-04 | 19e16ee7a01d229e750359098365e321 | 1361805120 | 39.080346 | -103.213452 | 0 |
| 116272 | 116272 | 2019-03-06 23:19 | 4.178100e+15 | fraud_Kozey-Kuhlman | personal_care | 84.96 | Jill | Flores | F | 639 Cruz Islands | ... | 41.9488 | -86.4913 | 3104 | Horticulturist, commercial | 1981-03-29 | a0c8641ca1f5d6e243ed5a2246e66176 | 1331075954 | 42.502065 | -86.732664 | 0 |
5 rows × 23 columns
df["is_fraud"].value_counts()0 208514
1 6006
Name: is_fraud, dtype: int64
def build_graph_bipartite(df_input, graph_type=nx.Graph()):
df=df_input.copy()
mapping={x:node_id for node_id, x in enumerate(set(df["cc_num"].values.tolist()+\
df["merchant"].values.tolist()))}
df["from"]=df["cc_num"].apply(lambda x:mapping[x]) #엣지의 출발점
df["to"]=df["merchant"].apply(lambda x:mapping[x]) #엣지의 도착점
df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from','to']).agg({"is_fraud":"sum","amt":"sum"}).reset_index()
df["is_fraud"]=df["is_fraud"].apply(lambda x:1 if x>0 else 0)
G=nx.from_edgelist(df[["from","to"]].values, create_using=graph_type)
nx.set_edge_attributes(G, {(int(x["from"]),int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label") #엣지 속성 설정,각 속성의 사기 여부부
nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["amt"] for idx,x in df[["from","to","amt"]].iterrows()}, "weight") # 엣지 속성 설정, 각 엣지의 거래 금액
return Gfrom sklearn.utils import resample
df_majority = df[df.is_fraud==0]
df_minority = df[df.is_fraud==1]
df_maj_dowsampled = resample(df_majority,
n_samples=len(df_minority),
random_state=42)
df_downsampled = pd.concat([df_minority, df_maj_dowsampled])
print(df_downsampled.is_fraud.value_counts())
G_down = build_graph_bipartite(df_downsampled)1 6006
0 6006
Name: is_fraud, dtype: int64
from sklearn.model_selection import train_test_split
train_edges, test_edges, train_labels, test_labels = train_test_split(list(range(len(G_down.edges))),
list(nx.get_edge_attributes(G_down, "label").values()),
test_size=0.30,
random_state=42)edgs = list(G_down.edges)
train_graph = G_down.edge_subgraph([edgs[x] for x in train_edges]).copy()
train_graph.add_nodes_from(list(set(G_down.nodes) - set(train_graph.nodes)))from node2vec import Node2Vec
from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder
node2vec_train = Node2Vec(train_graph, weight_key='weight')
model_train = node2vec_train.fit(window=10)Generating walks (CPU: 1): 0%| | 0/10 [00:00<?, ?it/s]Generating walks (CPU: 1): 100%|██████████| 10/10 [00:04<00:00, 2.29it/s]
_df2
cus_list = set(_df.query('is_fraud==1').cc_num.tolist())
_df2 = _df.query("cc_num in @ cus_list")
_df2 = _df2.assign(time= list(map(lambda x: int(x.split(' ')[-1].split(':')[0]), _df2['trans_date_trans_time'])))_df2["is_fraud"].value_counts()0 645424
1 6006
Name: is_fraud, dtype: int64
df = _df2 def build_graph_bipartite2(df_input, graph_type=nx.Graph()):
df=df_input.copy()
mapping={x:node_id for node_id, x in enumerate(set(df["cc_num"].values.tolist()+\
df["merchant"].values.tolist()))}
df["from"]=df["cc_num"].apply(lambda x:mapping[x]) #엣지의 출발점
df["to"]=df["merchant"].apply(lambda x:mapping[x]) #엣지의 도착점
df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from','to']).agg({"is_fraud":"sum","amt":"sum"}).reset_index()
df["is_fraud"]=df["is_fraud"].apply(lambda x:1 if x>0 else 0)
G=nx.from_edgelist(df[["from","to"]].values, create_using=graph_type)
nx.set_edge_attributes(G, {(int(x["from"]),int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label") #엣지 속성 설정,각 속성의 사기 여부부
nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["amt"] for idx,x in df[["from","to","amt"]].iterrows()}, "weight") # 엣지 속성 설정, 각 엣지의 거래 금액
return Gfrom sklearn.utils import resample
df_majority = df[df.is_fraud==0]
df_minority = df[df.is_fraud==1]
df_maj_dowsampled2 = resample(df_majority,
n_samples=len(df_minority),
random_state=42)
df_downsampled2 = pd.concat([df_minority, df_maj_dowsampled])
print(df_downsampled2.is_fraud.value_counts())
G_down2 = build_graph_bipartite(df_downsampled2)1 6006
0 6006
Name: is_fraud, dtype: int64
from sklearn.model_selection import train_test_split
train_edges2, test_edges2, train_labels2, test_labels2 = train_test_split(list(range(len(G_down2.edges))),
list(nx.get_edge_attributes(G_down2, "label").values()),
test_size=0.30,
random_state=42)edgs2 = list(G_down2.edges)
train_graph2 = G_down2.edge_subgraph([edgs[x] for x in train_edges2]).copy()
train_graph2.add_nodes_from(list(set(G_down2.nodes) - set(train_graph2.nodes)))node2vec_train2 = Node2Vec(train_graph2, weight_key='weight')
model_train2 = node2vec_train2.fit(window=10)Generating walks (CPU: 1): 0%| | 0/10 [00:00<?, ?it/s]Generating walks (CPU: 1): 100%|██████████| 10/10 [00:04<00:00, 2.40it/s]
traing(graph), test(logistic)
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
classes = [HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedder]
for cl in classes:
embeddings_train = cl(keyed_vectors=model_train.wv)
train_embeddings = [embeddings_train[str(edgs[x][0]), str(edgs[x][1])] for x in train_edges]
test_embeddings = [embeddings_train[str(edgs[x][0]), str(edgs[x][1])] for x in test_edges2]
rf = RandomForestClassifier(n_estimators=1000, random_state=42)
rf.fit(train_embeddings, train_labels);
y_pred2 = rf.predict(test_embeddings)
print(cl)
print('Precision:', metrics.precision_score(test_labels, y_pred2))
print('Recall:', metrics.recall_score(test_labels, y_pred2))
print('F1-Score:', metrics.f1_score(test_labels, y_pred2)) <class 'node2vec.edges.HadamardEmbedder'>
Precision: 0.6554307116104869
Recall: 0.09599561162918267
F1-Score: 0.16746411483253587
<class 'node2vec.edges.AverageEmbedder'>
Precision: 0.7195710455764075
Recall: 0.7361492046077893
F1-Score: 0.7277657266811279
<class 'node2vec.edges.WeightedL1Embedder'>
Precision: 0.4666666666666667
Recall: 0.01151947339550192
F1-Score: 0.022483940042826552
<class 'node2vec.edges.WeightedL2Embedder'>
Precision: 0.5319148936170213
Recall: 0.013713658804168952
F1-Score: 0.026737967914438502