import numpy as npimport
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import sklearn
import torch
# sklearn
from sklearn import model_selection # split함수이용
from sklearn import ensemble # RF,GBM
from sklearn import metrics
# embedding
from node2vec import Node2Vec
from node2vec.edges import HadamardEmbedder, AverageEmbedder, WeightedL1Embedder, WeightedL2Embedderdef build_graph_bipartite(df_input, graph_type=nx.Graph()):
df=df_input.copy()
mapping={x:node_id for node_id, x in enumerate(set(df["cc_num"].values.tolist()+\
df["merchant"].values.tolist()))}
df["from"]=df["cc_num"].apply(lambda x:mapping[x]) #엣지의 출발점
df["to"]=df["merchant"].apply(lambda x:mapping[x]) #엣지의 도착점
df = df[['from', 'to', "amt", "is_fraud"]].groupby(['from','to']).agg({"is_fraud":"sum","amt":"sum"}).reset_index()
df["is_fraud"]=df["is_fraud"].apply(lambda x:1 if x>0 else 0)
G=nx.from_edgelist(df[["from","to"]].values, create_using=graph_type)
nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["is_fraud"] for idx, x in df[["from","to","is_fraud"]].iterrows()}, "label") #엣지 속성 설정,각 속성의 사기 여부부
nx.set_edge_attributes(G,{(int(x["from"]),int(x["to"])):x["amt"] for idx,x in df[["from","to","amt"]].iterrows()}, "weight") # 엣지 속성 설정, 각 엣지의 거래 금액
return G
def build_graph_tripartite(df_input, graph_type=nx.Graph()):
df=df_input.copy()
mapping={x:node_id for node_id, x in enumerate(set(df.index.values.tolist() +
df["cc_num"].values.tolist() +
df["merchant"].values.tolist()))}
df["in_node"]= df["cc_num"].apply(lambda x: mapping[x])
df["out_node"]=df["merchant"].apply(lambda x:mapping[x])
G=nx.from_edgelist([(x["in_node"], mapping[idx]) for idx, x in df.iterrows()] +\
[(x["out_node"], mapping[idx]) for idx, x in df.iterrows()], create_using=graph_type)
nx.set_edge_attributes(G,{(x["in_node"], mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, "label")
nx.set_edge_attributes(G,{(x["out_node"], mapping[idx]):x["is_fraud"] for idx, x in df.iterrows()}, "label")
nx.set_edge_attributes(G,{(x["in_node"], mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")
nx.set_edge_attributes(G,{(x["out_node"], mapping[idx]):x["amt"] for idx, x in df.iterrows()}, "weight")
return G
def down_sample_textbook(df):
df_majority = df[df.is_fraud==0].copy()
df_minority = df[df.is_fraud==1].copy()
df_maj_dowsampled = sklearn.utils.resample(df_majority, n_samples=len(df_minority), replace=False, random_state=42)
df_downsampled = pd.concat([df_minority, df_maj_dowsampled])
return df_downsampled
def embedding(Graph):
# Graph -> X (feature)
_edgs = list(Graph.edges)
subGraph = Graph.edge_subgraph([_edgs[x] for x in range(len(Graph.edges))]).copy()
subGraph.add_nodes_from(list(set(Graph.nodes) - set(subGraph.nodes)))
embedded = AverageEmbedder(Node2Vec(subGraph, weight_key='weight').fit(window=10).wv)
X = [embedded[str(_edgs[x][0]), str(_edgs[x][1])] for x in range(len(Graph.edges))]
# Graph -> y (label)
y = np.array(list(nx.get_edge_attributes(Graph, "label").values()))
return X,y
def anal(df):
Graph = build_graph_bipartite(df)
X,XX,y,yy = embedding(Graph)
lrnr = RandomForestClassifier(n_estimators=100, random_state=42)
lrnr.fit(X,y)
yyhat = lrnr.predict(XX)
df = pd.DataFrame({
'acc':[sklearn.metrics.accuracy_score(yy,yyhat)],
'pre':[sklearn.metrics.precision_score(yy,yyhat)],
'rec':[sklearn.metrics.recall_score(yy,yyhat)],
'f1':[sklearn.metrics.f1_score(yy,yyhat)]}
)
return df
def our_sampling1(df):
cus_list = set(df.query('is_fraud==1').cc_num.tolist())
return df.query("cc_num in @ cus_list")fraudTrain = pd.read_csv("~/Desktop/fraudTrain.csv").iloc[:,1:]fraudTrain = fraudTrain.assign(trans_date_trans_time= list(map(lambda x: pd.to_datetime(x), fraudTrain.trans_date_trans_time)))
fraudTrain시도
_df1 = fraudTrain[fraudTrain["is_fraud"] == 0].sample(frac=0.20, random_state=42)
_df2 = fraudTrain[fraudTrain["is_fraud"] == 1]
df02 = pd.concat([_df1,_df2])
df02.shape214520*214520df02.is_fraud.mean().round(5)- 사기거래 빈도..
df02 = df02.reset_index()N = len(df02)tr/test
df02_tr,df02_test = sklearn.model_selection.train_test_split(df02, random_state=42)df02_tr.is_fraud.mean().round(5), df02_test.is_fraud.mean().round(5)df02_tr.shape, df02_test.shapetrain_mask = [i in df02_tr.index for i in range(N)]
test_mask = [i in df02_test.index for i in range(N)] np.array(train_mask).sum(), np.array(test_mask).sum()데이터 돌아가는중..(일단 여기서 df02가 커널 죽음)!!! _ 내일 다시 해보자
import time t1= time.time()
edge_index_list_plus = []
_cc_num = np.array(df02['cc_num'])
_trans_date_trans_time=np.array(df02['trans_date_trans_time'].apply(lambda x: x.value))
for i in range(N):
for j in range(N):
if _cc_num[i] != _cc_num[j]: # cc_num 값이 다르다면
time_difference = 0
else:
time_difference = abs(_trans_date_trans_time[i] - _trans_date_trans_time[j])
edge_index_list_plus.append([i, j, time_difference])
edge_index_list_plus_nparr =np.array(edge_index_list_plus)
np.save('edge_index_list_plus02.npy', edge_index_list_plus_nparr)
t2= time.time()
t2-t1데이터 돌아가는중…………………. 다시다시
edge_index = np.array(edge_index_list_plus)edge_index.shapeedge_indexedge_index[:,2] = np.abs(edge_index[:,2])
theta = edge_index[:,2].mean()
thetaedge_index[:,2] = (np.exp(-edge_index[:,2]/theta)!=1) * np.exp(-edge_index[:,2]/theta)
edge_indexedge_index_list_updated = edge_index.tolist()
np.array(edge_index_list_updated)[:,2].mean()mm = np.array(edge_index_list_updated)[:,2].mean()시간이 평균보다 짧다면? . 음..
selected_edges = [(int(row[0]), int(row[1])) for row in edge_index_list_updated if row[2] > mm]edge_index_selected = torch.tensor(selected_edges, dtype=torch.long).t()edge_index_selected.shapedata설정(x, edge_index, y)
x = df50_com['amt']a = torch.tensor(x, dtype=torch.float)a = a.reshape(-1,1)
ay = df50_com['is_fraud']b = torch.tensor(y,dtype=torch.int64)bimport torch_geometricdata = torch_geometric.data.Data(x=a, edge_index = edge_index_selected, y=b, train_mask = train_mask, test_mask = test_mask)datagnn
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(1, 16)
self.conv2 = GCNConv(16,2)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)model = GCN()modeloptimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()for epoch in range(200):
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()model.eval()
pred = model(data).argmax(dim=1)
correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
acc = int(correct) / int(data.test_mask.sum())
print(f'Accuracy: {acc:.4f}')Accuracy: 0.9321
`