240513 결과 정리

Author

김보람

Published

May 13, 2024

import pandas as pd
import os

24513

folder_path = './results2'
all_data = []
for file_name in os.listdir(folder_path):

    if file_name.endswith('.csv'):

        df = pd.read_csv(os.path.join(folder_path, file_name))

        all_data.append(df)
merged_df = pd.concat(all_data, ignore_index=True)
merged_df
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 17.510304 0.994275 0.000000 0.000000 0.000000 0.500000 False pyod 0.008171 420500 ['amt'] 0.010000 314572 0.005725 NaN
1 COPOD 0.084473 0.990832 0.304442 0.468073 0.368928 0.730958 False pyod 0.008171 420500 ['amt'] 0.010000 314572 0.005725 NaN
2 ECOD 0.083442 0.988054 0.165241 0.268184 0.204488 0.630192 False pyod 0.008171 420500 ['amt'] 0.010000 314572 0.005725 NaN
3 GMM 0.141062 0.991659 0.334139 0.460300 0.387202 0.727509 False pyod 0.008171 420500 ['amt'] 0.010000 314572 0.005725 NaN
4 HBOS 0.012526 0.993938 0.000000 0.000000 0.000000 0.499831 False pyod 0.008171 420500 ['amt'] 0.010000 314572 0.005725 NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2139 NeuralNetFastAI NaN 0.972080 0.139732 0.751805 0.235663 0.898952 False Autogluon 0.018278 14017 ['amt'] 0.299993 314572 0.005725 NaN
2140 XGBoost NaN 0.961230 0.106459 0.780677 0.187367 0.962270 False Autogluon 0.018278 14017 ['amt'] 0.299993 314572 0.005725 NaN
2141 NeuralNetTorch NaN 0.976031 0.159245 0.744586 0.262375 0.953301 False Autogluon 0.018278 14017 ['amt'] 0.299993 314572 0.005725 NaN
2142 LightGBMLarge NaN 0.973211 0.144070 0.744586 0.241426 0.959773 False Autogluon 0.018278 14017 ['amt'] 0.299993 314572 0.005725 NaN
2143 WeightedEnsemble_L2 NaN 0.973211 0.144070 0.744586 0.241426 0.959773 False Autogluon 0.018278 14017 ['amt'] 0.299993 314572 0.005725 NaN

2144 rows × 16 columns

merged_df.drop_duplicates()
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 17.510304 0.994275 0.000000 0.000000 0.000000 0.500000 False pyod 0.008171 420500 ['amt'] 0.01 314572 0.005725 NaN
1 COPOD 0.084473 0.990832 0.304442 0.468073 0.368928 0.730958 False pyod 0.008171 420500 ['amt'] 0.01 314572 0.005725 NaN
2 ECOD 0.083442 0.988054 0.165241 0.268184 0.204488 0.630192 False pyod 0.008171 420500 ['amt'] 0.01 314572 0.005725 NaN
3 GMM 0.141062 0.991659 0.334139 0.460300 0.387202 0.727509 False pyod 0.008171 420500 ['amt'] 0.01 314572 0.005725 NaN
4 HBOS 0.012526 0.993938 0.000000 0.000000 0.000000 0.499831 False pyod 0.008171 420500 ['amt'] 0.01 314572 0.005725 NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2111 LOF 0.078528 0.874442 0.006829 0.144919 0.013044 0.511781 False pyod 0.016841 42050 ['amt'] 0.10 314572 0.005725 NaN
2112 MAD 0.002493 0.975665 0.156133 0.737923 0.257733 0.857479 False pyod 0.016841 42050 ['amt'] 0.10 314572 0.005725 NaN
2113 MCD 0.011081 0.971313 0.136633 0.754026 0.231346 0.863295 False pyod 0.016841 42050 ['amt'] 0.10 314572 0.005725 NaN
2114 PCA 0.003764 0.937483 0.041194 0.445308 0.075411 0.692813 False pyod 0.016841 42050 ['amt'] 0.10 314572 0.005725 NaN
2115 ROD 3.873942 0.881445 0.000169 0.003331 0.000322 0.444917 False pyod 0.016841 42050 ['amt'] 0.10 314572 0.005725 NaN

1359 rows × 16 columns

merged_df.to_csv('./results2/240513_meged.csv', index=False)