import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import sklearn
import xgboost as xgb
# sklearn
from sklearn import model_selection # split함수이용
from sklearn import ensemble # RF,GBM
from sklearn import metrics
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
# gnn
import torch
import torch.nn.functional as F
import torch_geometric
from torch_geometric.nn import GCNConv
# autogluon
from autogluon.tabular import TabularDataset, TabularPredictor
imports
def down_sample_textbook(df):
= df[df.is_fraud==0].copy()
df_majority = df[df.is_fraud==1].copy()
df_minority = sklearn.utils.resample(df_majority, n_samples=len(df_minority), replace=False, random_state=42)
df_maj_dowsampled = pd.concat([df_minority, df_maj_dowsampled])
df_downsampled return df_downsampled
def compute_time_difference(group):
= len(group)
n = []
result for i in range(n):
for j in range(n):
= abs(group.iloc[i].trans_date_trans_time.value - group.iloc[j].trans_date_trans_time.value)
time_difference
result.append([group.iloc[i].name, group.iloc[j].name, time_difference])return result
class GCN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(1, 16)
self.conv2 = GCNConv(16,2)
def forward(self, data):
= data.x, data.edge_index
x, edge_index
= self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
x
return F.log_softmax(x, dim=1)
= pd.read_csv("~/Desktop/fraudTrain.csv").iloc[:,1:] fraudTrain
= fraudTrain.assign(trans_date_trans_time= list(map(lambda x: pd.to_datetime(x), fraudTrain.trans_date_trans_time)))
fraudTrain fraudTrain
trans_date_trans_time | cc_num | merchant | category | amt | first | last | gender | street | city | ... | lat | long | city_pop | job | dob | trans_num | unix_time | merch_lat | merch_long | is_fraud | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2019-01-01 00:00:00 | 2.703190e+15 | fraud_Rippin, Kub and Mann | misc_net | 4.97 | Jennifer | Banks | F | 561 Perry Cove | Moravian Falls | ... | 36.0788 | -81.1781 | 3495 | Psychologist, counselling | 1988-03-09 | 0b242abb623afc578575680df30655b9 | 1325376018 | 36.011293 | -82.048315 | 0 |
1 | 2019-01-01 00:00:00 | 6.304230e+11 | fraud_Heller, Gutmann and Zieme | grocery_pos | 107.23 | Stephanie | Gill | F | 43039 Riley Greens Suite 393 | Orient | ... | 48.8878 | -118.2105 | 149 | Special educational needs teacher | 1978-06-21 | 1f76529f8574734946361c461b024d99 | 1325376044 | 49.159047 | -118.186462 | 0 |
2 | 2019-01-01 00:00:00 | 3.885950e+13 | fraud_Lind-Buckridge | entertainment | 220.11 | Edward | Sanchez | M | 594 White Dale Suite 530 | Malad City | ... | 42.1808 | -112.2620 | 4154 | Nature conservation officer | 1962-01-19 | a1a22d70485983eac12b5b88dad1cf95 | 1325376051 | 43.150704 | -112.154481 | 0 |
3 | 2019-01-01 00:01:00 | 3.534090e+15 | fraud_Kutch, Hermiston and Farrell | gas_transport | 45.00 | Jeremy | White | M | 9443 Cynthia Court Apt. 038 | Boulder | ... | 46.2306 | -112.1138 | 1939 | Patent attorney | 1967-01-12 | 6b849c168bdad6f867558c3793159a81 | 1325376076 | 47.034331 | -112.561071 | 0 |
4 | 2019-01-01 00:03:00 | 3.755340e+14 | fraud_Keeling-Crist | misc_pos | 41.96 | Tyler | Garcia | M | 408 Bradley Rest | Doe Hill | ... | 38.4207 | -79.4629 | 99 | Dance movement psychotherapist | 1986-03-28 | a41d7549acf90789359a9aa5346dcb46 | 1325376186 | 38.674999 | -78.632459 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1048570 | 2020-03-10 16:07:00 | 6.011980e+15 | fraud_Fadel Inc | health_fitness | 77.00 | Haley | Wagner | F | 05561 Farrell Crescent | Annapolis | ... | 39.0305 | -76.5515 | 92106 | Accountant, chartered certified | 1943-05-28 | 45ecd198c65e81e597db22e8d2ef7361 | 1362931649 | 38.779464 | -76.317042 | 0 |
1048571 | 2020-03-10 16:07:00 | 4.839040e+15 | fraud_Cremin, Hamill and Reichel | misc_pos | 116.94 | Meredith | Campbell | F | 043 Hanson Turnpike | Hedrick | ... | 41.1826 | -92.3097 | 1583 | Geochemist | 1999-06-28 | c00ce51c6ebb7657474a77b9e0b51f34 | 1362931670 | 41.400318 | -92.726724 | 0 |
1048572 | 2020-03-10 16:08:00 | 5.718440e+11 | fraud_O'Connell, Botsford and Hand | home | 21.27 | Susan | Mills | F | 005 Cody Estates | Louisville | ... | 38.2507 | -85.7476 | 736284 | Engineering geologist | 1952-04-02 | 17c9dc8b2a6449ca2473726346e58e6c | 1362931711 | 37.293339 | -84.798122 | 0 |
1048573 | 2020-03-10 16:08:00 | 4.646850e+18 | fraud_Thompson-Gleason | health_fitness | 9.52 | Julia | Bell | F | 576 House Crossroad | West Sayville | ... | 40.7320 | -73.1000 | 4056 | Film/video editor | 1990-06-25 | 5ca650881b48a6a38754f841c23b77ab | 1362931718 | 39.773077 | -72.213209 | 0 |
1048574 | 2020-03-10 16:08:00 | 2.283740e+15 | fraud_Buckridge PLC | misc_pos | 6.81 | Shannon | Williams | F | 9345 Spencer Junctions Suite 183 | Alpharetta | ... | 34.0770 | -84.3033 | 165556 | Prison officer | 1997-12-27 | 8d0a575fe635bbde12f1a2bffc126731 | 1362931730 | 33.601468 | -83.891921 | 0 |
1048575 rows × 22 columns
데이터정리
= fraudTrain[fraudTrain["is_fraud"] == 0].sample(frac=0.20, random_state=42)
_df1 = fraudTrain[fraudTrain["is_fraud"] == 1]
_df2 = pd.concat([_df1,_df2])
df02 df02.shape
(214520, 22)
= down_sample_textbook(df02)
df50 df50.shape
(12012, 22)
= df50.reset_index() df50
= len(df50) N
= df50[["amt","is_fraud"]] df50
"amt"].mean() df50[
297.4638911088911
"amt"].describe() df50[
count 12012.000000
mean 297.463891
std 384.130842
min 1.010000
25% 19.917500
50% 84.680000
75% 468.295000
max 12025.300000
Name: amt, dtype: float64
tr/test
= sklearn.model_selection.train_test_split(df50, random_state=42) df50_tr,df50_test
df50_tr.shape, df50_test.shape
((9009, 2), (3003, 2))
= [i in df50_tr.index for i in range(N)]
train_mask = [i in df50_test.index for i in range(N)] test_mask
= np.array(train_mask)
train_mask = np.array(test_mask) test_mask
sum(), test_mask.sum() train_mask.
(9009, 3003)
train_mask.shape, test_mask.shape
((12012,), (12012,))
edge_index 설정
# groups = df50.groupby('cc_num')
# edge_index_list_plus = [compute_time_difference(group) for _, group in groups]
# edge_index_list_plus_flat = [item for sublist in edge_index_list_plus for item in sublist]
# edge_index_list_plus_nparr = np.array(edge_index_list_plus_flat)
# np.save('edge_index_list_plus50.npy', edge_index_list_plus_nparr)
= np.load('edge_index_list_plus50.npy')
edge_index = edge_index[:,2].mean()
theta = np.load('edge_index_list_plus50.npy').astype(np.float64)
edge_index 2] = (np.exp(-edge_index[:,2]/theta) != 1)*(np.exp(-edge_index[:,2]/theta))
edge_index[:,= edge_index.tolist()
edge_index = np.array(edge_index)[:,2].mean()
mean_ = [(int(row[0]), int(row[1])) for row in edge_index if row[2] > mean_]
selected_edges = torch.tensor(selected_edges, dtype=torch.long).t() edge_index_selected
data설정(x, edge_index, y)
= torch.tensor(df50['amt'], dtype=torch.float).reshape(-1,1)
x = torch.tensor(df50['is_fraud'],dtype=torch.int64)
y = torch_geometric.data.Data(x=x, edge_index = edge_index_selected, y=y, train_mask = train_mask, test_mask = test_mask)
data data
Data(x=[12012, 1], edge_index=[2, 93730], y=[12012], train_mask=[12012], test_mask=[12012])
autogluon
A. 데이터
= TabularDataset(df50_tr)
tr = TabularDataset(df50_test) tst
B. predictor 생성
= TabularPredictor("is_fraud") predictr
No path specified. Models will be saved in: "AutogluonModels/ag-20230930_045601/"
C.적합(fit)
='best_quality') predictr.fit(tr, presets
Presets specified: ['best_quality']
Stack configuration (auto_stack=True): num_stack_levels=0, num_bag_folds=8, num_bag_sets=1
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20230930_045601/"
AutoGluon Version: 0.8.2
Python Version: 3.8.18
Operating System: Linux
Platform Machine: x86_64
Platform Version: #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2
Disk Space Avail: 749.06 GB / 982.82 GB (76.2%)
Train Data Rows: 9009
Train Data Columns: 1
Label Column: is_fraud
Preprocessing data ...
AutoGluon infers your prediction problem is: 'binary' (because only two unique label-values observed).
2 unique label values: [1, 0]
If 'binary' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = 1, class 0 = 0
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 31104.83 MB
Train Data (Original) Memory Usage: 0.07 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Stage 5 Generators:
Fitting DropDuplicatesFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('float', []) : 1 | ['amt']
Types of features in processed data (raw dtype, special dtypes):
('float', []) : 1 | ['amt']
0.0s = Fit runtime
1 features in original data used to generate 1 features in processed data.
Train Data (Processed) Memory Usage: 0.07 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.04s ...
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
User-specified model hyperparameters to be fit:
{
'NN_TORCH': {},
'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],
'CAT': {},
'XGB': {},
'FASTAI': {},
'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ...
0.8782 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ...
0.8641 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMXT_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.885 = Validation score (accuracy)
0.49s = Training runtime
0.03s = Validation runtime
Fitting model: LightGBM_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.894 = Validation score (accuracy)
0.57s = Training runtime
0.01s = Validation runtime
Fitting model: RandomForestGini_BAG_L1 ...
0.856 = Validation score (accuracy)
0.34s = Training runtime
0.19s = Validation runtime
Fitting model: RandomForestEntr_BAG_L1 ...
0.856 = Validation score (accuracy)
0.44s = Training runtime
0.21s = Validation runtime
Fitting model: CatBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8947 = Validation score (accuracy)
1.49s = Training runtime
0.0s = Validation runtime
Fitting model: ExtraTreesGini_BAG_L1 ...
0.8622 = Validation score (accuracy)
0.33s = Training runtime
0.2s = Validation runtime
Fitting model: ExtraTreesEntr_BAG_L1 ...
0.8626 = Validation score (accuracy)
0.31s = Training runtime
0.2s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.867 = Validation score (accuracy)
7.47s = Training runtime
0.09s = Validation runtime
Fitting model: XGBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8944 = Validation score (accuracy)
0.5s = Training runtime
0.02s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8888 = Validation score (accuracy)
14.26s = Training runtime
0.05s = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8941 = Validation score (accuracy)
0.85s = Training runtime
0.01s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.8948 = Validation score (accuracy)
2.14s = Training runtime
0.01s = Validation runtime
AutoGluon training complete, total runtime = 38.84s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20230930_045601/")
<autogluon.tabular.predictor.predictor.TabularPredictor at 0x7f3fabaaf250>
predictr.leaderboard()
model score_val pred_time_val fit_time pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order
0 WeightedEnsemble_L2 0.894772 0.019776 4.481569 0.009500 2.139285 2 True 14
1 CatBoost_BAG_L1 0.894661 0.004185 1.490714 0.004185 1.490714 1 True 7
2 XGBoost_BAG_L1 0.894439 0.021677 0.498835 0.021677 0.498835 1 True 11
3 LightGBMLarge_BAG_L1 0.894106 0.006091 0.851570 0.006091 0.851570 1 True 13
4 LightGBM_BAG_L1 0.893995 0.013288 0.571850 0.013288 0.571850 1 True 4
5 NeuralNetTorch_BAG_L1 0.888778 0.050316 14.255491 0.050316 14.255491 1 True 12
6 LightGBMXT_BAG_L1 0.885004 0.034434 0.492139 0.034434 0.492139 1 True 3
7 KNeighborsUnif_BAG_L1 0.878233 0.010086 0.003595 0.010086 0.003595 1 True 1
8 NeuralNetFastAI_BAG_L1 0.867022 0.086901 7.465914 0.086901 7.465914 1 True 10
9 KNeighborsDist_BAG_L1 0.864136 0.008126 0.002526 0.008126 0.002526 1 True 2
10 ExtraTreesEntr_BAG_L1 0.862582 0.202717 0.313634 0.202717 0.313634 1 True 9
11 ExtraTreesGini_BAG_L1 0.862249 0.202180 0.328506 0.202180 0.328506 1 True 8
12 RandomForestGini_BAG_L1 0.856033 0.187426 0.337518 0.187426 0.337518 1 True 5
13 RandomForestEntr_BAG_L1 0.856033 0.210448 0.443938 0.210448 0.443938 1 True 6
model | score_val | pred_time_val | fit_time | pred_time_val_marginal | fit_time_marginal | stack_level | can_infer | fit_order | |
---|---|---|---|---|---|---|---|---|---|
0 | WeightedEnsemble_L2 | 0.894772 | 0.019776 | 4.481569 | 0.009500 | 2.139285 | 2 | True | 14 |
1 | CatBoost_BAG_L1 | 0.894661 | 0.004185 | 1.490714 | 0.004185 | 1.490714 | 1 | True | 7 |
2 | XGBoost_BAG_L1 | 0.894439 | 0.021677 | 0.498835 | 0.021677 | 0.498835 | 1 | True | 11 |
3 | LightGBMLarge_BAG_L1 | 0.894106 | 0.006091 | 0.851570 | 0.006091 | 0.851570 | 1 | True | 13 |
4 | LightGBM_BAG_L1 | 0.893995 | 0.013288 | 0.571850 | 0.013288 | 0.571850 | 1 | True | 4 |
5 | NeuralNetTorch_BAG_L1 | 0.888778 | 0.050316 | 14.255491 | 0.050316 | 14.255491 | 1 | True | 12 |
6 | LightGBMXT_BAG_L1 | 0.885004 | 0.034434 | 0.492139 | 0.034434 | 0.492139 | 1 | True | 3 |
7 | KNeighborsUnif_BAG_L1 | 0.878233 | 0.010086 | 0.003595 | 0.010086 | 0.003595 | 1 | True | 1 |
8 | NeuralNetFastAI_BAG_L1 | 0.867022 | 0.086901 | 7.465914 | 0.086901 | 7.465914 | 1 | True | 10 |
9 | KNeighborsDist_BAG_L1 | 0.864136 | 0.008126 | 0.002526 | 0.008126 | 0.002526 | 1 | True | 2 |
10 | ExtraTreesEntr_BAG_L1 | 0.862582 | 0.202717 | 0.313634 | 0.202717 | 0.313634 | 1 | True | 9 |
11 | ExtraTreesGini_BAG_L1 | 0.862249 | 0.202180 | 0.328506 | 0.202180 | 0.328506 | 1 | True | 8 |
12 | RandomForestGini_BAG_L1 | 0.856033 | 0.187426 | 0.337518 | 0.187426 | 0.337518 | 1 | True | 5 |
13 | RandomForestEntr_BAG_L1 | 0.856033 | 0.210448 | 0.443938 | 0.210448 | 0.443938 | 1 | True | 6 |
D. 예측(predict)
== predictr.predict(tr)).mean() (tr.is_fraud
0.8967698967698968
== predictr.predict(tst)).mean() (tst.is_fraud
0.8877788877788878
뭐지 best 옵션을 줬는데 더 낮아졌다.