import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_1(fraudTrain, 0.2, 0.005, 8.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.2, 0.005, 8.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 7.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 6.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 5.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 4.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 3.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 2.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 1.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 0.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.977689 | 0.166667 | 0.866667 | 0.279570 | 0.983705 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 80280.0 | 0.3 |
1 | GCN | None | 0.976801 | 0.158333 | 0.844444 | 0.266667 | 0.982562 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 85280.0 | 0.3 |
2 | GCN | None | 0.978355 | 0.171053 | 0.866667 | 0.285714 | 0.984094 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 75280.0 | 0.3 |
3 | GCN | None | 0.977911 | 0.168103 | 0.866667 | 0.281588 | 0.972460 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 65280.0 | 0.3 |
4 | GCN | None | 0.976801 | 0.158333 | 0.844444 | 0.266667 | 0.952367 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 55280.0 | 0.3 |
5 | GCN | None | 0.977245 | 0.158120 | 0.822222 | 0.265233 | 0.951381 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 45280.0 | 0.3 |
6 | GCN | None | 0.977578 | 0.157205 | 0.800000 | 0.262774 | 0.951931 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 35280.0 | 0.3 |
7 | GCN | None | 0.978466 | 0.156682 | 0.755556 | 0.259542 | 0.951116 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 25280.0 | 0.3 |
8 | GCN | None | 0.979243 | 0.168224 | 0.800000 | 0.277992 | 0.950702 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 15280.0 | 0.3 |
9 | GCN | None | 0.980131 | 0.158163 | 0.688889 | 0.257261 | 0.922967 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 5280.0 | 0.3 |
= try_1(fraudTrain, 0.2, 0.005, 8.028000e+04, 0.2)
df_results = try_1(fraudTrain, 0.2, 0.005, 8.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 7.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 6.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 5.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 4.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 3.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 2.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 1.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 0.528000e+04, 0.2, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.977023 | 0.162500 | 0.866667 | 0.273684 | 0.983556 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 80280.0 | 0.2 |
1 | GCN | None | 0.978688 | 0.173333 | 0.866667 | 0.288889 | 0.984035 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 85280.0 | 0.2 |
2 | GCN | None | 0.976690 | 0.160494 | 0.866667 | 0.270833 | 0.983425 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 75280.0 | 0.2 |
3 | GCN | None | 0.977356 | 0.164557 | 0.866667 | 0.276596 | 0.983224 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 65280.0 | 0.2 |
4 | GCN | None | 0.978133 | 0.169565 | 0.866667 | 0.283636 | 0.983361 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 55280.0 | 0.2 |
5 | GCN | None | 0.978688 | 0.170404 | 0.844444 | 0.283582 | 0.956493 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 45280.0 | 0.2 |
6 | GCN | None | 0.979465 | 0.166667 | 0.777778 | 0.274510 | 0.952407 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 35280.0 | 0.2 |
7 | GCN | None | 0.973138 | 0.133829 | 0.800000 | 0.229299 | 0.951815 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 25280.0 | 0.2 |
8 | GCN | None | 0.978355 | 0.162162 | 0.800000 | 0.269663 | 0.951978 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 15280.0 | 0.2 |
9 | GCN | None | 0.979243 | 0.168224 | 0.800000 | 0.277992 | 0.931861 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 5280.0 | 0.2 |
= try_1(fraudTrain, 0.2, 0.005, 9.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.2, 0.005, 10.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 11.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 12.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 13.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 14.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 15.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 16.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 17.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 18.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.978688 | 0.170404 | 0.844444 | 0.283582 | 0.984218 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 90280.0 | 0.3 |
1 | GCN | None | 0.977467 | 0.165254 | 0.866667 | 0.277580 | 0.983574 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 105280.0 | 0.3 |
2 | GCN | None | 0.977467 | 0.165254 | 0.866667 | 0.277580 | 0.984196 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 115280.0 | 0.3 |
3 | GCN | None | 0.978355 | 0.171053 | 0.866667 | 0.285714 | 0.983333 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 125280.0 | 0.3 |
4 | GCN | None | 0.974026 | 0.151292 | 0.911111 | 0.259494 | 0.988520 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 135280.0 | 0.3 |
5 | GCN | None | 0.976690 | 0.165992 | 0.911111 | 0.280822 | 0.988331 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 145280.0 | 0.3 |
6 | GCN | None | 0.977023 | 0.168033 | 0.911111 | 0.283737 | 0.988294 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 155280.0 | 0.3 |
7 | GCN | None | 0.977467 | 0.170833 | 0.911111 | 0.287719 | 0.988234 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 165280.0 | 0.3 |
8 | GCN | None | 0.977245 | 0.166667 | 0.888889 | 0.280702 | 0.988103 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 175280.0 | 0.3 |
9 | GCN | None | 0.977356 | 0.167364 | 0.888889 | 0.281690 | 0.988068 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 185280.0 | 0.3 |
= try_1(fraudTrain, 0.2, 0.005, 8.028000e+04, 0.4)
df_results = try_1(fraudTrain, 0.2, 0.005, 8.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 7.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 6.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 5.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 4.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 3.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 2.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 1.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 0.528000e+04, 0.4, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.978022 | 0.168831 | 0.866667 | 0.282609 | 0.950845 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 80280.0 | 0.4 |
1 | GCN | None | 0.977245 | 0.169421 | 0.911111 | 0.285714 | 0.972178 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 85280.0 | 0.4 |
2 | GCN | None | 0.974914 | 0.147860 | 0.844444 | 0.251656 | 0.954162 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 75280.0 | 0.4 |
3 | GCN | None | 0.978244 | 0.161435 | 0.800000 | 0.268657 | 0.951919 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 65280.0 | 0.4 |
4 | GCN | None | 0.973249 | 0.137037 | 0.822222 | 0.234921 | 0.952063 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 55280.0 | 0.4 |
5 | GCN | None | 0.979687 | 0.165049 | 0.755556 | 0.270916 | 0.951795 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 45280.0 | 0.4 |
6 | GCN | None | 0.977800 | 0.152466 | 0.755556 | 0.253731 | 0.951398 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 35280.0 | 0.4 |
7 | GCN | None | 0.978799 | 0.165138 | 0.800000 | 0.273764 | 0.951024 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 25280.0 | 0.4 |
8 | GCN | None | 0.976357 | 0.155738 | 0.844444 | 0.262976 | 0.950255 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 15280.0 | 0.4 |
9 | GCN | None | 0.978910 | 0.159624 | 0.755556 | 0.263566 | 0.921529 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 5280.0 | 0.4 |
= try_1(fraudTrain, 0.2, 0.005, 8.028000e+04, 0.5)
df_results = try_1(fraudTrain, 0.2, 0.005, 10.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 11.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 12.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 13.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 8.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 7.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 6.528000e+04, 0.5, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.978910 | 0.165899 | 0.800000 | 0.274809 | 0.951676 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 80280.0 | 0.5 |
1 | GCN | None | 0.977245 | 0.163866 | 0.866667 | 0.275618 | 0.955950 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 105280.0 | 0.5 |
2 | GCN | None | 0.975247 | 0.157692 | 0.911111 | 0.268852 | 0.971900 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 115280.0 | 0.5 |
3 | GCN | None | 0.978022 | 0.171674 | 0.888889 | 0.287770 | 0.984734 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 125280.0 | 0.5 |
4 | GCN | None | 0.978799 | 0.174107 | 0.866667 | 0.289963 | 0.984117 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 135280.0 | 0.5 |
5 | GCN | None | 0.977578 | 0.157205 | 0.800000 | 0.262774 | 0.951482 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 85280.0 | 0.5 |
6 | GCN | None | 0.973471 | 0.138060 | 0.822222 | 0.236422 | 0.951718 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 75280.0 | 0.5 |
7 | GCN | None | 0.979687 | 0.168269 | 0.777778 | 0.276680 | 0.951842 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 65280.0 | 0.5 |