import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_1(fraudTrain, 0.3, 0.05, 8.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.3, 0.05, 8.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 7.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 6.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 5.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 4.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 3.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 2.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 1.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 0.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.970862 | 0.642369 | 0.940000 | 0.763194 | 0.985496 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 80280.0 | 0.3 |
1 | GCN | None | 0.968198 | 0.618221 | 0.950000 | 0.749014 | 0.985674 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 85280.0 | 0.3 |
2 | GCN | None | 0.972194 | 0.654292 | 0.940000 | 0.771546 | 0.985709 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 75280.0 | 0.3 |
3 | GCN | None | 0.972194 | 0.655738 | 0.933333 | 0.770289 | 0.979327 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 65280.0 | 0.3 |
4 | GCN | None | 0.967366 | 0.622066 | 0.883333 | 0.730028 | 0.968981 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 55280.0 | 0.3 |
5 | GCN | None | 0.966034 | 0.611628 | 0.876667 | 0.720548 | 0.965117 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 45280.0 | 0.3 |
6 | GCN | None | 0.964036 | 0.600478 | 0.836667 | 0.699164 | 0.949307 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 35280.0 | 0.3 |
7 | GCN | None | 0.964868 | 0.606715 | 0.843333 | 0.705718 | 0.944587 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 25280.0 | 0.3 |
8 | GCN | None | 0.958874 | 0.558758 | 0.840000 | 0.671105 | 0.938106 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 15280.0 | 0.3 |
9 | GCN | None | 0.966533 | 0.628571 | 0.806667 | 0.706569 | 0.913194 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 5280.0 | 0.3 |
= try_1(fraudTrain, 0.3, 0.05, 8.028000e+04, 0.2)
df_results = try_1(fraudTrain, 0.3, 0.05, 8.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 7.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 6.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 5.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 4.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 3.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 2.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 1.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 0.528000e+04, 0.2, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
'./results/20240205-210521-proposed.csv') pd.read_csv(
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | NaN | 0.971861 | 0.648526 | 0.953333 | 0.771930 | 0.987355 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 80280.0 | 0.2 |
1 | GCN | NaN | 0.970196 | 0.632967 | 0.960000 | 0.762914 | 0.987462 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 85280.0 | 0.2 |
2 | GCN | NaN | 0.972361 | 0.652968 | 0.953333 | 0.775068 | 0.988143 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 75280.0 | 0.2 |
3 | GCN | NaN | 0.972028 | 0.652778 | 0.940000 | 0.770492 | 0.985693 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 65280.0 | 0.2 |
4 | GCN | NaN | 0.972194 | 0.654292 | 0.940000 | 0.771546 | 0.984942 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 55280.0 | 0.2 |
5 | GCN | NaN | 0.968698 | 0.629032 | 0.910000 | 0.743869 | 0.971887 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 45280.0 | 0.2 |
6 | GCN | NaN | 0.960706 | 0.567797 | 0.893333 | 0.694301 | 0.965830 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 35280.0 | 0.2 |
7 | GCN | NaN | 0.963869 | 0.598575 | 0.840000 | 0.699029 | 0.948427 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 25280.0 | 0.2 |
8 | GCN | NaN | 0.958708 | 0.556769 | 0.850000 | 0.672823 | 0.943271 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 15280.0 | 0.2 |
9 | GCN | NaN | 0.967033 | 0.629442 | 0.826667 | 0.714697 | 0.922877 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | NaN | 5280.0 | 0.2 |
= try_1(fraudTrain, 0.3, 0.05, 9.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.3, 0.05, 10.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 11.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 12.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 13.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 14.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 15.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 16.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 17.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 18.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.971029 | 0.650000 | 0.910000 | 0.758333 | 0.971637 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 80280.0 | 0.4 |
1 | GCN | None | 0.972527 | 0.658824 | 0.933333 | 0.772414 | 0.979403 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 85280.0 | 0.4 |
2 | GCN | None | 0.968864 | 0.633570 | 0.893333 | 0.741355 | 0.969695 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 75280.0 | 0.4 |
3 | GCN | None | 0.966700 | 0.618483 | 0.870000 | 0.722992 | 0.966465 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 65280.0 | 0.4 |
4 | GCN | None | 0.965201 | 0.606061 | 0.866667 | 0.713306 | 0.962443 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 55280.0 | 0.4 |
5 | GCN | None | 0.958208 | 0.553145 | 0.850000 | 0.670171 | 0.948366 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 45280.0 | 0.4 |
6 | GCN | None | 0.960539 | 0.571106 | 0.843333 | 0.681023 | 0.947776 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 35280.0 | 0.4 |
7 | GCN | None | 0.967033 | 0.626866 | 0.840000 | 0.717949 | 0.943233 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 25280.0 | 0.4 |
8 | GCN | None | 0.965701 | 0.615764 | 0.833333 | 0.708215 | 0.937167 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 15280.0 | 0.4 |
9 | GCN | None | 0.963037 | 0.597015 | 0.800000 | 0.683761 | 0.909528 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 5280.0 | 0.4 |
= try_1(fraudTrain, 0.3, 0.05, 8.028000e+04, 0.4)
df_results = try_1(fraudTrain, 0.3, 0.05, 8.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 7.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 6.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 5.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 4.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 3.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 2.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 1.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.05, 0.528000e+04, 0.4, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.969697 | 0.635945 | 0.920000 | 0.752044 | 0.971674 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 80280.0 | 0.4 |
1 | GCN | None | 0.964535 | 0.591579 | 0.936667 | 0.725161 | 0.979275 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 85280.0 | 0.4 |
2 | GCN | None | 0.960872 | 0.567850 | 0.906667 | 0.698331 | 0.968544 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 75280.0 | 0.4 |
3 | GCN | None | 0.965368 | 0.606977 | 0.870000 | 0.715068 | 0.965953 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 65280.0 | 0.4 |
4 | GCN | None | 0.964702 | 0.601852 | 0.866667 | 0.710383 | 0.962175 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 55280.0 | 0.4 |
5 | GCN | None | 0.956377 | 0.539095 | 0.873333 | 0.666667 | 0.948450 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 45280.0 | 0.4 |
6 | GCN | None | 0.959873 | 0.565410 | 0.850000 | 0.679095 | 0.947832 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 35280.0 | 0.4 |
7 | GCN | None | 0.961871 | 0.581609 | 0.843333 | 0.688435 | 0.943207 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 25280.0 | 0.4 |
8 | GCN | None | 0.962204 | 0.585082 | 0.836667 | 0.688615 | 0.937430 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 15280.0 | 0.4 |
9 | GCN | None | 0.965534 | 0.620779 | 0.796667 | 0.697810 | 0.910292 | True | Proposed | 0.3 | 14014 | amt | 0.407164 | 6006 | 0.05 | None | 5280.0 | 0.4 |