import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
df50_train, df[::10]: test
= try_3(fraudTrain, 10, 0, 0, 10973.519989002007, 0.501)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.964562 | 0.115884 | 0.725 | 0.199828 | 0.864214 | True | Proposed | 0 | 9009 | amt | 0.498945 | 3003 | 0 | None | 10973.519989 | 0.501 |
df50_tr, df50_tst
= throw(fraudTrain,0.5) df50
0.5, 0.5, 10973.519989002007, 0.501) try_1(df50,
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.886483 | 0.962151 | 0.804553 | 0.876323 | 0.92527 | True | Proposed | 0.5 | 8409 | amt | 0.500059 | 3603 | 0.5 | None | 10973.519989 | 0.501 |