[Proposed] df50_tr,df001_tst

Author

김보람

Published

February 16, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
df_results = try_5(fraudTrain, 10,11406996,0.8)
df_results = try_5(fraudTrain, 10,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 10,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.7, prev_results=df_results)

ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.917783 0.016590 0.947368 0.032609 0.968007 True Proposed 0.131127 9009 amt 0.505051 25980 0.001463 None 11406996 0.8
1 GCN None 0.938217 0.022547 0.973684 0.044074 0.982845 True Proposed 0.129820 9009 amt 0.499944 25978 0.001463 None 11406996 0.9
2 GCN None 0.886999 0.012450 0.973684 0.024585 0.960453 True Proposed 0.129633 9009 amt 0.499278 25982 0.001463 None 11406996 0.7
3 GCN None 0.941596 0.024899 0.934783 0.048505 0.984682 True Proposed 0.120230 9009 amt 0.500611 28885 0.001593 None 11406996 0.9
4 GCN None 0.915980 0.018661 0.867925 0.036537 0.947152 True Proposed 0.120450 9009 amt 0.500611 28874 0.001836 None 11406996 0.8
5 GCN None 0.892921 0.011832 0.948718 0.023373 0.958848 True Proposed 0.120417 9009 amt 0.502054 28876 0.001351 None 11406996 0.7
6 GCN None 0.940046 0.022579 0.978261 0.044139 0.984014 True Proposed 0.109714 9009 amt 0.500500 32508 0.001415 None 11406996 0.9
7 GCN None 0.921472 0.012408 0.864865 0.024465 0.963446 True Proposed 0.109427 9009 amt 0.500056 32498 0.001139 None 11406996 0.8
8 GCN None 0.895498 0.011357 0.975000 0.022453 0.960901 True Proposed 0.108611 9009 amt 0.495948 32497 0.001231 None 11406996 0.7
9 GCN None 0.947098 0.032544 0.970588 0.062977 0.985970 True Proposed 0.098821 9009 amt 0.498501 37125 0.001832 None 11406996 0.9
10 GCN None 0.911643 0.012940 1.000000 0.025550 0.980952 True Proposed 0.099066 9009 amt 0.502498 37122 0.001158 None 11406996 0.8
11 GCN None 0.894713 0.013640 0.931034 0.026886 0.969827 True Proposed 0.098448 9009 amt 0.497724 37127 0.001562 None 11406996 0.7
df_results = try_5(fraudTrain, 10,1e+7,0.8)
df_results = try_5(fraudTrain, 9,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 6,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 5,1e+7,0.8, prev_results=df_results)


ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.920676 0.019971 1.000000 0.039161 0.977881 True Proposed 0.129262 9009 amt 0.497391 25982 0.001617 None 10000000.0 0.8
1 GCN None 0.924151 0.018834 0.954545 0.036939 0.975426 True Proposed 0.120242 9009 amt 0.500722 28873 0.001524 None 10000000.0 0.8
2 GCN None 0.921382 0.015046 0.951220 0.029624 0.975071 True Proposed 0.109015 9009 amt 0.497724 32499 0.001262 None 10000000.0 0.8
3 GCN None 0.926061 0.018253 0.962264 0.035827 0.972528 True Proposed 0.098496 9009 amt 0.498501 37125 0.001428 None 10000000.0 0.8
4 GCN None 0.925250 0.018226 0.909091 0.035736 0.974611 True Proposed 0.087928 9009 amt 0.503386 43318 0.001524 None 10000000.0 0.8
5 GCN None 0.916731 0.019714 0.988636 0.038658 0.979137 True Proposed 0.074902 9009 amt 0.497169 51964 0.001693 None 10000000.0 0.8