[Proposed] df0.2

Author

김보람

Published

March 28, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
df_results = try_6(fraudTrain, 0.2,1e7,0.96)
df_results = try_6(fraudTrain, 0.2,1e7,0.94, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.92, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.9, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.88, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.86, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.84, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.82, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.80, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.78, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.76, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.74, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.72, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.7, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.969499 0.908387 0.941806 0.924795 0.989259 True Proposed 0.2 22522 amt 0.200293 7508 0.199121 None 10000000.0 0.96
1 GCN None 0.965503 0.901242 0.935525 0.918064 0.987353 True Proposed 0.2 22522 amt 0.197807 7508 0.206580 None 10000000.0 0.94
2 GCN None 0.955115 0.888591 0.885619 0.887102 0.984401 True Proposed 0.2 22522 amt 0.200293 7508 0.199121 None 10000000.0 0.92
3 GCN None 0.958977 0.874307 0.931714 0.902098 0.983667 True Proposed 0.2 22522 amt 0.199050 7508 0.202850 None 10000000.0 0.90
4 GCN None 0.949254 0.850236 0.919057 0.883308 0.980431 True Proposed 0.2 22522 amt 0.197007 7508 0.208977 None 10000000.0 0.88
5 GCN None 0.948055 0.821918 0.938137 0.876190 0.979554 True Proposed 0.2 22522 amt 0.201359 7508 0.195924 None 10000000.0 0.86
6 GCN None 0.948189 0.826012 0.941991 0.880197 0.981559 True Proposed 0.2 22522 amt 0.199316 7508 0.202051 None 10000000.0 0.84
7 GCN None 0.928476 0.813968 0.840105 0.826830 0.972653 True Proposed 0.2 22522 amt 0.198917 7508 0.203250 None 10000000.0 0.82
8 GCN None 0.936867 0.810303 0.892523 0.849428 0.976111 True Proposed 0.2 22522 amt 0.200160 7508 0.199521 None 10000000.0 0.80
9 GCN None 0.937400 0.805353 0.898236 0.849262 0.974586 True Proposed 0.2 22522 amt 0.201225 7508 0.196324 None 10000000.0 0.78
10 GCN None 0.937134 0.793696 0.925184 0.854411 0.974375 True Proposed 0.2 22522 amt 0.200204 7508 0.199387 None 10000000.0 0.76
11 GCN None 0.923015 0.799333 0.812331 0.805780 0.968231 True Proposed 0.2 22522 amt 0.201137 7508 0.196590 None 10000000.0 0.74
12 GCN None 0.912360 0.774086 0.785570 0.779786 0.961307 True Proposed 0.2 22522 amt 0.200826 7508 0.197523 None 10000000.0 0.72
13 GCN None 0.904635 0.780702 0.747416 0.763696 0.962761 True Proposed 0.2 22522 amt 0.197940 7508 0.206180 None 10000000.0 0.70
df_results = try_6(fraudTrain, 0.009,1e7,0.8)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results