import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
fraudTrain.is_fraud.mean()
0.005727773406766326
= try_6(fraudTrain, 0.052,1e7,0.8)
df_results = try_6(fraudTrain, 0.054,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.056,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.058,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.960831 | 0.692698 | 0.452019 | 0.547056 | 0.972166 | True | Proposed | 0.052 | 86625 | amt | 0.051890 | 28875 | 0.052329 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.969143 | 0.761484 | 0.594483 | 0.667699 | 0.982588 | True | Proposed | 0.054 | 83416 | amt | 0.054618 | 27806 | 0.052147 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.964047 | 0.758494 | 0.540930 | 0.631498 | 0.981711 | True | Proposed | 0.056 | 80437 | amt | 0.055683 | 26813 | 0.056950 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.956621 | 0.698658 | 0.448939 | 0.546629 | 0.972666 | True | Proposed | 0.058 | 77664 | amt | 0.057916 | 25888 | 0.058251 | None | 10000000.0 | 0.8 |
= try_6(fraudTrain, 0.06,1e7,0.8)
df_results = try_6(fraudTrain, 0.062,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.064,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.066, 1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.068,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
= try_6(fraudTrain, 0.07,1e7,0.8)
df_results = try_6(fraudTrain, 0.072,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.074,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.076,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.078,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
= try_6(fraudTrain, 0.08,1e7,0.8)
df_results = try_6(fraudTrain, 0.082,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.084,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.086,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.088,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
= try_6(fraudTrain, 0.09,1e7,0.8)
df_results = try_6(fraudTrain, 0.092,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.094,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.096,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.098,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
= try_6(fraudTrain, 0.00573,1e7,0.8)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results