import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
240318
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_6(fraudTrain, 0.,1e7,1)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
IndexError: index 0 is out of bounds for dimension 0 with size 0
try_6??
Signature: try_6(fraudTrain, fraudrate, theta, gamma, prev_results=None) Docstring: <no docstring> Source: def try_6(fraudTrain, fraudrate, theta, gamma, prev_results=None): # 이게 그냥 tr/tst비율 바로 맞출수 있지 않을까? if prev_results is None: df_results = pd.DataFrame(columns=[ 'model', 'time', 'acc', 'pre', 'rec', 'f1', 'auc', 'graph_based', 'method', 'throw_rate', 'train_size', 'train_cols', 'train_frate', 'test_size', 'test_frate', 'hyper_params', 'theta', 'gamma' ]) else: df_results = prev_results df = throw(fraudTrain,fraudrate) df_tr, df_tstn = sklearn.model_selection.train_test_split(df) df2, mask = concat(df_tr, df_tstn) df2['index'] = df2.index df = df2.reset_index() groups = df.groupby('cc_num') edge_index = np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist]) edge_index = edge_index.astype(np.float64) edge_index[:,2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist() edge_index = torch.tensor([(int(row[0]), int(row[1])) for row in edge_index if row[2] > gamma], dtype=torch.long).t() x = torch.tensor(df['amt'].values, dtype=torch.float).reshape(-1,1) y = torch.tensor(df['is_fraud'].values,dtype=torch.int64) data = torch_geometric.data.Data(x=x, edge_index = edge_index, y=y, train_mask = mask[0], test_mask= mask[1]) model = GCN1() optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) yy = (data.y[data.test_mask]).numpy() yyhat, yyhat_ = train_and_evaluate_model(data, model, optimizer) yyhat_ = yyhat_.detach().numpy() eval = evaluation(yy, yyhat, yyhat_) result = { 'model': 'GCN', 'time': None, 'acc': eval['acc'], 'pre': eval['pre'], 'rec': eval['rec'], 'f1': eval['f1'], 'auc': eval['auc'], 'graph_based': True, 'method': 'Proposed', 'throw_rate': df.is_fraud.mean(), 'train_size': len(df_tr), 'train_cols': 'amt', 'train_frate': df_tr.is_fraud.mean(), 'test_size': len(df_tstn), 'test_frate': df_tstn.is_fraud.mean(), 'hyper_params': None, 'theta': theta, 'gamma': gamma } df_results = df_results.append(result, ignore_index=True) return df_results File: ~/Dropbox/GNNpaper/posts/function_proposed_gcn.py Type: function