def try_7(fraudTrain, ratio, n, theta, gamma, prev_results=None): # try_4에서 index안겹치게 바꾼것
if prev_results is None:
df_results = pd.DataFrame(columns=[
'model', 'time', 'acc', 'pre', 'rec', 'f1', 'auc', 'graph_based',
'method', 'throw_rate', 'train_size', 'train_cols', 'train_frate',
'test_size', 'test_frate', 'hyper_params', 'theta', 'gamma'
])
else:
df_results = prev_results
df50 = throw(fraudTrain,ratio)
df_tr, df_tst = sklearn.model_selection.train_test_split(df50)
dfn = fraudTrain[::n]
dfnn = dfn[~dfn.index.isin(df_tr.index)]
dfnn = dfnn.reset_index(drop=True)
df_trn, df_tstn = sklearn.model_selection.train_test_split(dfnn)
df2, mask = concat(df_tr, df_tstn)
df2['index'] = df2.index
df = df2.reset_index()
groups = df.groupby('cc_num')
edge_index = np.array([item for sublist in (compute_time_difference(group) for _, group in groups) for item in sublist])
edge_index = edge_index.astype(np.float64)
edge_index[:,2] = (np.exp(-edge_index[:,2]/(theta)) != 1)*(np.exp(-edge_index[:,2]/(theta))).tolist()
edge_index = torch.tensor([(int(row[0]), int(row[1])) for row in edge_index if row[2] > gamma], dtype=torch.long).t()
x = torch.tensor(df['amt'].values, dtype=torch.float).reshape(-1,1)
y = torch.tensor(df['is_fraud'].values,dtype=torch.int64)
data = torch_geometric.data.Data(x=x, edge_index = edge_index, y=y, train_mask = mask[0], test_mask= mask[1])
model = GCN1()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
yy = (data.y[data.test_mask]).numpy()
yyhat, yyhat_ = train_and_evaluate_model(data, model, optimizer)
yyhat_ = yyhat_.detach().numpy()
eval = evaluation(yy, yyhat, yyhat_)
result = {
'model': 'GCN',
'time': None,
'acc': eval['acc'],
'pre': eval['pre'],
'rec': eval['rec'],
'f1': eval['f1'],
'auc': eval['auc'],
'graph_based': True,
'method': 'Proposed',
'throw_rate': df.is_fraud.mean(),
'train_size': len(df_tr),
'train_cols': 'amt',
'train_frate': df_tr.is_fraud.mean(),
'test_size': len(df_tstn),
'test_frate': df_tstn.is_fraud.mean(),
'hyper_params': None,
'theta': theta,
'gamma': gamma
}
df_results = df_results.append(result, ignore_index=True)
return df_results