import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
try_1: 비율 다 다르게: test_frate조정
= try_1(fraudTrain, 0.7, 0.005, 1e7,0.8)
df_results = try_1(fraudTrain, 0.6, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.5, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.4, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.3, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.1, 0.005, 1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.088967 | 0.005091 | 1.000000 | 0.010131 | 0.684231 | True | Proposed | 0.7 | 6006 | amt | 0.998002 | 2574 | 0.005 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.868798 | 0.036675 | 1.000000 | 0.070755 | 0.972189 | True | Proposed | 0.6 | 7007 | amt | 0.855002 | 3003 | 0.005 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.905912 | 0.050420 | 1.000000 | 0.096000 | 0.972478 | True | Proposed | 0.5 | 8409 | amt | 0.712094 | 3603 | 0.005 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.908526 | 0.046512 | 0.909091 | 0.088496 | 0.969702 | True | Proposed | 0.4 | 10511 | amt | 0.569308 | 4504 | 0.005 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.923576 | 0.055901 | 0.900000 | 0.105263 | 0.969327 | True | Proposed | 0.3 | 14014 | amt | 0.426431 | 6006 | 0.005 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.936397 | 0.065789 | 0.888889 | 0.122511 | 0.967839 | True | Proposed | 0.2 | 21021 | amt | 0.283574 | 9009 | 0.005 | None | 10000000.0 | 0.8 |
6 | GCN | None | 0.967810 | 0.107372 | 0.744444 | 0.187675 | 0.975554 | True | Proposed | 0.1 | 42042 | amt | 0.140716 | 18018 | 0.005 | None | 10000000.0 | 0.8 |
= try_1(fraudTrain, 0.09, 0.005, 1e7,0.8)
df_results = try_1(fraudTrain, 0.08, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.07, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.06, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.05, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.04, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.03, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.02, 0.005, 1e7,0.8, prev_results=df_results)
df_results = try_1(fraudTrain, 0.01, 0.005, 1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
try_5: 비율 다 다름: n으로 …
= try_5(fraudTrain, 10,1e+7,0.8)
df_results = try_5(fraudTrain, 9,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 6,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 5,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.927785 | 0.017810 | 0.971429 | 0.034979 | 0.980290 | True | Proposed | 0.129162 | 9009 | amt | 0.497724 | 25978 | 0.001347 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.928067 | 0.019376 | 0.953488 | 0.037981 | 0.977006 | True | Proposed | 0.120661 | 9009 | amt | 0.502609 | 28874 | 0.001489 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.920646 | 0.012639 | 0.970588 | 0.024953 | 0.971934 | True | Proposed | 0.109181 | 9009 | amt | 0.499278 | 32500 | 0.001046 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.925283 | 0.016329 | 0.938776 | 0.032100 | 0.973764 | True | Proposed | 0.098058 | 9009 | amt | 0.496725 | 37127 | 0.001320 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.922988 | 0.017389 | 0.967213 | 0.034163 | 0.977288 | True | Proposed | 0.087737 | 9009 | amt | 0.502831 | 43318 | 0.001408 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.918906 | 0.015439 | 0.942857 | 0.030380 | 0.974102 | True | Proposed | 0.075671 | 9009 | amt | 0.504274 | 51952 | 0.001347 | None | 10000000.0 | 0.8 |
try_6: 비율 다 같게
= try_6(fraudTrain, 0.2,1e7,0.8)
df_results = try_6(fraudTrain, 0.3,1e7,0.8, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
try_7: 비율 다 다름(train_frate 설정)
= try_7(fraudTrain, 0.9, 10,1e+7,0.8)
df_results = try_7(fraudTrain, 0.8, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.7, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.6, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.4, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.3, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.2, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.1, 10,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.808770 | 0.007758 | 0.975000 | 0.015394 | 0.958392 | True | Proposed | 0.146142 | 5004 | amt | 0.900080 | 26089 | 0.001533 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.876793 | 0.011087 | 0.972973 | 0.021924 | 0.972643 | True | Proposed | 0.143218 | 5630 | amt | 0.799822 | 26070 | 0.001419 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.905148 | 0.015544 | 0.975000 | 0.030600 | 0.952527 | True | Proposed | 0.140461 | 6435 | amt | 0.702875 | 26051 | 0.001535 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.907249 | 0.018308 | 1.000000 | 0.035957 | 0.968529 | True | Proposed | 0.135638 | 7507 | amt | 0.599707 | 26016 | 0.001730 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.933698 | 0.018296 | 0.941176 | 0.035895 | 0.970539 | True | Proposed | 0.122217 | 11261 | amt | 0.400586 | 25927 | 0.001311 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.942821 | 0.021898 | 0.916667 | 0.042774 | 0.955167 | True | Proposed | 0.110806 | 15015 | amt | 0.299034 | 25831 | 0.001394 | None | 10000000.0 | 0.8 |
6 | GCN | None | 0.955435 | 0.027257 | 0.969697 | 0.053024 | 0.981679 | True | Proposed | 0.094042 | 22522 | amt | 0.199671 | 25648 | 0.001287 | None | 10000000.0 | 0.8 |
7 | GCN | None | 0.981613 | 0.032051 | 0.652174 | 0.061100 | 0.967592 | True | Proposed | 0.064221 | 45045 | amt | 0.099456 | 25072 | 0.000917 | None | 10000000.0 | 0.8 |
= try_7(fraudTrain, 0.09, 10,1e+7,0.8)
df_results = try_7(fraudTrain, 0.08, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.07, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.06, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.04, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.03, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.02, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.01, 10,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
커널 죽음
= try_7(fraudTrain, 0.009, 10,1e+7,0.8)
df_results = try_7(fraudTrain, 0.008, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.007, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.006, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.004, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.003, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.002, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.001, 10,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results