[Pyod] df05:d인덱스겹침

Author

김보람

Published

February 14, 2024

ref: https://pyod.readthedocs.io/en/latest/pyod.models.html#all-models

1. Imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
/tmp/ipykernel_3766802/761229760.py:1: DeprecationWarning: 
Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
        
  import pandas as pd
import warnings
warnings.filterwarnings('ignore')
%run functions_pyod2.py
with open('fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    

2.

pyod(*pyod_preprocess2(fraudTrain))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 COPOD 0.200191 0.736597 0.748475 0.724409 0.736245 0.736782 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
1 ECOD 0.003224 0.660340 0.668449 0.656168 0.662252 0.660403 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
2 GMM 0.023980 0.662005 0.670691 0.656168 0.663350 0.662093 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
3 HBOS 0.897164 0.492174 0.000000 0.000000 0.000000 0.499662 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
4 IForest 0.142015 0.666334 0.670143 0.674541 0.672335 0.666209 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
5 INNE 0.327061 0.583750 0.591212 0.582677 0.586913 0.583766 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
6 KDE 2.038541 0.760906 0.762712 0.767717 0.765206 0.760802 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
7 KNN 0.009548 0.721945 0.727693 0.722441 0.725058 0.721937 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
8 LODA 0.023346 0.492507 0.000000 0.000000 0.000000 0.500000 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
9 LOF 0.016555 0.505495 0.511684 0.560367 0.534920 0.504660 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
10 MAD 0.001449 0.731269 0.973580 0.483596 0.646208 0.735037 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
11 MCD 0.004074 0.769564 0.775862 0.767717 0.771768 0.769592 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
12 OCSVM 3.871274 0.703297 0.702236 0.721129 0.711557 0.703025 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
13 PCA 0.002268 0.234765 0.238866 0.232283 0.235529 0.234803 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None
14 ROD 2.136653 0.318015 0.324161 0.316929 0.320504 0.318032 False pyod 0.5 9009 [amt] 0.497502 3003 0.507493 None