2/22
4/5
4/8
ref: https://pyod.readthedocs.io/en/latest/pyod.models.html#all-models
1. Imports
import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../functions_pyod2.py
with open('../fraudTrain.pkl', 'rb') as file:
fraudTrain = pickle.load(file)
2.
pyod(*pyod_preprocess4(fraudTrain, 0.03))
0 |
ECOD |
0.030764 |
0.963237 |
0.386093 |
0.389706 |
0.387891 |
0.685307 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
1 |
GMM |
0.029831 |
0.969790 |
0.494832 |
0.512032 |
0.503285 |
0.747963 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
2 |
HBOS |
0.007478 |
0.969750 |
0.000000 |
0.000000 |
0.000000 |
0.499815 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
3 |
IForest |
3.284466 |
0.969790 |
0.494832 |
0.512032 |
0.503285 |
0.747963 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
4 |
INNE |
3.445417 |
0.969790 |
0.494832 |
0.512032 |
0.503285 |
0.747963 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
5 |
KNN |
0.179364 |
0.969910 |
0.496762 |
0.512701 |
0.504605 |
0.748349 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
6 |
LODA |
0.237153 |
0.969750 |
0.000000 |
0.000000 |
0.000000 |
0.499815 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
7 |
LOF |
0.298528 |
0.933566 |
0.026411 |
0.034091 |
0.029764 |
0.497686 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
8 |
MCD |
0.027775 |
0.969790 |
0.494832 |
0.512032 |
0.503285 |
0.747963 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
9 |
PCA |
0.009329 |
0.968591 |
0.474901 |
0.480615 |
0.477741 |
0.732121 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
10 |
ROD |
6.908336 |
0.940480 |
0.000673 |
0.000668 |
0.000671 |
0.485052 |
False |
pyod |
0.03 |
150150 |
[amt] |
0.030037 |
50050 |
0.02989 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.02))
0 |
ECOD |
0.042985 |
0.973533 |
0.346720 |
0.338784 |
0.342706 |
0.662756 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
1 |
GMM |
0.039798 |
0.979873 |
0.506081 |
0.489863 |
0.497840 |
0.739962 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
2 |
HBOS |
0.010284 |
0.979261 |
0.000000 |
0.000000 |
0.000000 |
0.499810 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
3 |
IForest |
4.639415 |
0.980100 |
0.511978 |
0.489209 |
0.500334 |
0.739757 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
4 |
INNE |
5.045339 |
0.980420 |
0.520673 |
0.485939 |
0.502706 |
0.738319 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
5 |
KNN |
0.286477 |
0.977955 |
0.456671 |
0.434271 |
0.445189 |
0.711765 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
6 |
LODA |
0.374500 |
0.979261 |
0.000000 |
0.000000 |
0.000000 |
0.499810 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
7 |
LOF |
0.506328 |
0.958495 |
0.002508 |
0.002616 |
0.002561 |
0.490492 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
8 |
MCD |
0.037995 |
0.979873 |
0.506081 |
0.489863 |
0.497840 |
0.739962 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
9 |
PCA |
0.013600 |
0.979660 |
0.500681 |
0.480706 |
0.490490 |
0.735370 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
10 |
ROD |
5.371442 |
0.967939 |
0.000000 |
0.000000 |
0.000000 |
0.494031 |
False |
pyod |
0.02 |
225225 |
[amt] |
0.019878 |
75075 |
0.020366 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.01))
0 |
ECOD |
0.083728 |
0.984695 |
0.243837 |
0.239372 |
0.241584 |
0.615868 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
1 |
GMM |
0.072678 |
0.989331 |
0.475715 |
0.467626 |
0.471636 |
0.731162 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
2 |
HBOS |
0.017917 |
0.989457 |
0.000000 |
0.000000 |
0.000000 |
0.499818 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
3 |
IForest |
10.094498 |
0.989351 |
0.476667 |
0.467626 |
0.472103 |
0.731172 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
4 |
INNE |
11.064828 |
0.989404 |
0.479223 |
0.467626 |
0.473353 |
0.731199 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
5 |
KNN |
0.667739 |
0.987686 |
0.394040 |
0.389143 |
0.391576 |
0.691493 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
6 |
LODA |
0.684057 |
0.989457 |
0.000000 |
0.000000 |
0.000000 |
0.499818 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
7 |
LOF |
1.079839 |
0.980773 |
0.002199 |
0.001962 |
0.002074 |
0.496402 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
8 |
MCD |
0.083876 |
0.989331 |
0.475715 |
0.467626 |
0.471636 |
0.731162 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
9 |
PCA |
0.029059 |
0.989331 |
0.475715 |
0.467626 |
0.471636 |
0.731162 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
10 |
ROD |
10.545987 |
0.975425 |
0.000462 |
0.000654 |
0.000542 |
0.493053 |
False |
pyod |
0.01 |
450450 |
[amt] |
0.009939 |
150150 |
0.010183 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.00573))
0 |
ECOD |
0.157627 |
0.989803 |
0.118100 |
0.124157 |
0.121053 |
0.559442 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
1 |
GMM |
0.144377 |
0.992887 |
0.376615 |
0.393387 |
0.384818 |
0.694842 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
2 |
HBOS |
0.023745 |
0.993982 |
0.000000 |
0.000000 |
0.000000 |
0.499818 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
3 |
IForest |
20.173736 |
0.992887 |
0.376615 |
0.393387 |
0.384818 |
0.694842 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
4 |
INNE |
21.359880 |
0.989490 |
0.053371 |
0.051282 |
0.052306 |
0.523054 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
5 |
KNN |
1.404509 |
0.992116 |
0.303235 |
0.303644 |
0.303439 |
0.649838 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
6 |
LODA |
1.521674 |
0.993982 |
0.000000 |
0.000000 |
0.000000 |
0.499818 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
7 |
LOF |
2.060348 |
0.988952 |
0.001411 |
0.001350 |
0.001380 |
0.497959 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
8 |
MCD |
0.135239 |
0.992887 |
0.376615 |
0.393387 |
0.384818 |
0.694842 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
9 |
PCA |
0.047284 |
0.992887 |
0.376615 |
0.393387 |
0.384818 |
0.694842 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
10 |
ROD |
11.951331 |
0.990101 |
0.000000 |
0.000000 |
0.000000 |
0.497866 |
False |
pyod |
0.00573 |
786126 |
[amt] |
0.005755 |
262042 |
0.005656 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.006))
0 |
ECOD |
0.145698 |
0.989686 |
0.122661 |
0.118633 |
0.120613 |
0.556772 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
1 |
GMM |
0.135238 |
0.992619 |
0.374912 |
0.356568 |
0.365510 |
0.676501 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
2 |
HBOS |
0.024256 |
0.993758 |
0.000000 |
0.000000 |
0.000000 |
0.499859 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
3 |
IForest |
16.434630 |
0.992599 |
0.371977 |
0.350536 |
0.360939 |
0.673493 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
4 |
INNE |
19.408525 |
0.992715 |
0.372985 |
0.325737 |
0.347764 |
0.661226 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
5 |
KNN |
1.251204 |
0.991708 |
0.300752 |
0.294906 |
0.297800 |
0.645397 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
6 |
LODA |
1.181331 |
0.993758 |
0.000000 |
0.000000 |
0.000000 |
0.499859 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
7 |
LOF |
1.943183 |
0.988024 |
0.001325 |
0.001340 |
0.001333 |
0.497641 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
8 |
MCD |
0.132324 |
0.992619 |
0.374912 |
0.356568 |
0.365510 |
0.676501 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
9 |
PCA |
0.042269 |
0.992619 |
0.374912 |
0.356568 |
0.365510 |
0.676501 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
10 |
ROD |
13.854177 |
0.993958 |
0.000000 |
0.000000 |
0.000000 |
0.499960 |
False |
pyod |
0.006 |
750750 |
[amt] |
0.006013 |
250250 |
0.005962 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.007))
0 |
ECOD |
0.127007 |
0.988061 |
0.159015 |
0.155599 |
0.157289 |
0.574832 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
1 |
GMM |
0.118660 |
0.991855 |
0.428475 |
0.411458 |
0.419794 |
0.703750 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
2 |
HBOS |
0.021492 |
0.992499 |
0.000000 |
0.000000 |
0.000000 |
0.499829 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
3 |
IForest |
13.654450 |
0.991828 |
0.425736 |
0.404948 |
0.415082 |
0.700504 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
4 |
INNE |
16.246222 |
0.991930 |
0.428044 |
0.377604 |
0.401245 |
0.686983 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
5 |
KNN |
1.089241 |
0.990247 |
0.311141 |
0.298177 |
0.304521 |
0.646708 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
6 |
LODA |
1.013922 |
0.992499 |
0.000000 |
0.000000 |
0.000000 |
0.499829 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
7 |
LOF |
1.578532 |
0.987096 |
0.001618 |
0.001302 |
0.001443 |
0.497754 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
8 |
MCD |
0.110214 |
0.991855 |
0.428475 |
0.411458 |
0.419794 |
0.703750 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
9 |
PCA |
0.036325 |
0.991855 |
0.428475 |
0.411458 |
0.419794 |
0.703750 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
10 |
ROD |
12.376851 |
0.988573 |
0.000000 |
0.000000 |
0.000000 |
0.497852 |
False |
pyod |
0.007 |
643500 |
[amt] |
0.006946 |
214500 |
0.007161 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.008))
0 |
ECOD |
0.107724 |
0.987197 |
0.197100 |
0.201482 |
0.199267 |
0.597471 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
1 |
GMM |
0.101690 |
0.991156 |
0.442857 |
0.459569 |
0.451058 |
0.727480 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
2 |
HBOS |
0.016904 |
0.991710 |
0.000000 |
0.000000 |
0.000000 |
0.499807 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
3 |
IForest |
14.253869 |
0.991182 |
0.443861 |
0.455526 |
0.449618 |
0.725488 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
4 |
INNE |
15.132947 |
0.991193 |
0.444298 |
0.454178 |
0.449184 |
0.724825 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
5 |
KNN |
0.851337 |
0.989728 |
0.357875 |
0.376685 |
0.367039 |
0.685649 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
6 |
LODA |
0.876604 |
0.991710 |
0.000000 |
0.000000 |
0.000000 |
0.499807 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
7 |
LOF |
1.358122 |
0.984964 |
0.000000 |
0.000000 |
0.000000 |
0.496407 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
8 |
MCD |
0.095074 |
0.991156 |
0.442857 |
0.459569 |
0.451058 |
0.727480 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
9 |
PCA |
0.033198 |
0.991156 |
0.442857 |
0.459569 |
0.451058 |
0.727480 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
10 |
ROD |
11.736433 |
0.987858 |
0.000000 |
0.000000 |
0.000000 |
0.497865 |
False |
pyod |
0.008 |
563062 |
[amt] |
0.008031 |
187688 |
0.007907 |
None |
pyod(*pyod_preprocess4(fraudTrain, 0.009))
0 |
ECOD |
0.099683 |
0.985872 |
0.220540 |
0.222149 |
0.221341 |
0.607493 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
1 |
GMM |
0.093896 |
0.990164 |
0.456106 |
0.458223 |
0.457162 |
0.726619 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
2 |
HBOS |
0.018281 |
0.990583 |
0.000000 |
0.000000 |
0.000000 |
0.499809 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
3 |
IForest |
11.115221 |
0.990350 |
0.465306 |
0.453581 |
0.459369 |
0.724413 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
4 |
INNE |
12.340797 |
0.990134 |
0.454605 |
0.458223 |
0.456407 |
0.726604 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
5 |
KNN |
0.748844 |
0.988797 |
0.379426 |
0.376658 |
0.378037 |
0.685519 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
6 |
LODA |
1.080885 |
0.990583 |
0.000000 |
0.000000 |
0.000000 |
0.499809 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
7 |
LOF |
1.217433 |
0.982210 |
0.002046 |
0.001989 |
0.002017 |
0.496570 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
8 |
MCD |
0.093267 |
0.990164 |
0.456106 |
0.458223 |
0.457162 |
0.726619 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
9 |
PCA |
0.037229 |
0.990164 |
0.456106 |
0.458223 |
0.457162 |
0.726619 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |
10 |
ROD |
12.339864 |
0.977996 |
0.000000 |
0.000000 |
0.000000 |
0.493458 |
False |
pyod |
0.009 |
500499 |
[amt] |
0.008987 |
166834 |
0.009039 |
None |