[Pyod] df0.03~0.01

Author

김보람

Published

February 22, 2024

  1. 2/22

  2. 4/5

  3. 4/8

ref: https://pyod.readthedocs.io/en/latest/pyod.models.html#all-models

1. Imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../functions_pyod2.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    

2.

pyod(*pyod_preprocess4(fraudTrain, 0.03))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.030764 0.963237 0.386093 0.389706 0.387891 0.685307 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
1 GMM 0.029831 0.969790 0.494832 0.512032 0.503285 0.747963 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
2 HBOS 0.007478 0.969750 0.000000 0.000000 0.000000 0.499815 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
3 IForest 3.284466 0.969790 0.494832 0.512032 0.503285 0.747963 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
4 INNE 3.445417 0.969790 0.494832 0.512032 0.503285 0.747963 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
5 KNN 0.179364 0.969910 0.496762 0.512701 0.504605 0.748349 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
6 LODA 0.237153 0.969750 0.000000 0.000000 0.000000 0.499815 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
7 LOF 0.298528 0.933566 0.026411 0.034091 0.029764 0.497686 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
8 MCD 0.027775 0.969790 0.494832 0.512032 0.503285 0.747963 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
9 PCA 0.009329 0.968591 0.474901 0.480615 0.477741 0.732121 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
10 ROD 6.908336 0.940480 0.000673 0.000668 0.000671 0.485052 False pyod 0.03 150150 [amt] 0.030037 50050 0.02989 None
pyod(*pyod_preprocess4(fraudTrain, 0.02))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.042985 0.973533 0.346720 0.338784 0.342706 0.662756 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
1 GMM 0.039798 0.979873 0.506081 0.489863 0.497840 0.739962 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
2 HBOS 0.010284 0.979261 0.000000 0.000000 0.000000 0.499810 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
3 IForest 4.639415 0.980100 0.511978 0.489209 0.500334 0.739757 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
4 INNE 5.045339 0.980420 0.520673 0.485939 0.502706 0.738319 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
5 KNN 0.286477 0.977955 0.456671 0.434271 0.445189 0.711765 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
6 LODA 0.374500 0.979261 0.000000 0.000000 0.000000 0.499810 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
7 LOF 0.506328 0.958495 0.002508 0.002616 0.002561 0.490492 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
8 MCD 0.037995 0.979873 0.506081 0.489863 0.497840 0.739962 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
9 PCA 0.013600 0.979660 0.500681 0.480706 0.490490 0.735370 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
10 ROD 5.371442 0.967939 0.000000 0.000000 0.000000 0.494031 False pyod 0.02 225225 [amt] 0.019878 75075 0.020366 None
pyod(*pyod_preprocess4(fraudTrain, 0.01))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.083728 0.984695 0.243837 0.239372 0.241584 0.615868 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
1 GMM 0.072678 0.989331 0.475715 0.467626 0.471636 0.731162 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
2 HBOS 0.017917 0.989457 0.000000 0.000000 0.000000 0.499818 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
3 IForest 10.094498 0.989351 0.476667 0.467626 0.472103 0.731172 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
4 INNE 11.064828 0.989404 0.479223 0.467626 0.473353 0.731199 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
5 KNN 0.667739 0.987686 0.394040 0.389143 0.391576 0.691493 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
6 LODA 0.684057 0.989457 0.000000 0.000000 0.000000 0.499818 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
7 LOF 1.079839 0.980773 0.002199 0.001962 0.002074 0.496402 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
8 MCD 0.083876 0.989331 0.475715 0.467626 0.471636 0.731162 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
9 PCA 0.029059 0.989331 0.475715 0.467626 0.471636 0.731162 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
10 ROD 10.545987 0.975425 0.000462 0.000654 0.000542 0.493053 False pyod 0.01 450450 [amt] 0.009939 150150 0.010183 None
pyod(*pyod_preprocess4(fraudTrain, 0.00573))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.157627 0.989803 0.118100 0.124157 0.121053 0.559442 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
1 GMM 0.144377 0.992887 0.376615 0.393387 0.384818 0.694842 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
2 HBOS 0.023745 0.993982 0.000000 0.000000 0.000000 0.499818 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
3 IForest 20.173736 0.992887 0.376615 0.393387 0.384818 0.694842 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
4 INNE 21.359880 0.989490 0.053371 0.051282 0.052306 0.523054 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
5 KNN 1.404509 0.992116 0.303235 0.303644 0.303439 0.649838 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
6 LODA 1.521674 0.993982 0.000000 0.000000 0.000000 0.499818 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
7 LOF 2.060348 0.988952 0.001411 0.001350 0.001380 0.497959 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
8 MCD 0.135239 0.992887 0.376615 0.393387 0.384818 0.694842 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
9 PCA 0.047284 0.992887 0.376615 0.393387 0.384818 0.694842 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
10 ROD 11.951331 0.990101 0.000000 0.000000 0.000000 0.497866 False pyod 0.00573 786126 [amt] 0.005755 262042 0.005656 None
pyod(*pyod_preprocess4(fraudTrain, 0.006))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.145698 0.989686 0.122661 0.118633 0.120613 0.556772 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
1 GMM 0.135238 0.992619 0.374912 0.356568 0.365510 0.676501 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
2 HBOS 0.024256 0.993758 0.000000 0.000000 0.000000 0.499859 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
3 IForest 16.434630 0.992599 0.371977 0.350536 0.360939 0.673493 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
4 INNE 19.408525 0.992715 0.372985 0.325737 0.347764 0.661226 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
5 KNN 1.251204 0.991708 0.300752 0.294906 0.297800 0.645397 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
6 LODA 1.181331 0.993758 0.000000 0.000000 0.000000 0.499859 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
7 LOF 1.943183 0.988024 0.001325 0.001340 0.001333 0.497641 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
8 MCD 0.132324 0.992619 0.374912 0.356568 0.365510 0.676501 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
9 PCA 0.042269 0.992619 0.374912 0.356568 0.365510 0.676501 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
10 ROD 13.854177 0.993958 0.000000 0.000000 0.000000 0.499960 False pyod 0.006 750750 [amt] 0.006013 250250 0.005962 None
pyod(*pyod_preprocess4(fraudTrain, 0.007))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.127007 0.988061 0.159015 0.155599 0.157289 0.574832 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
1 GMM 0.118660 0.991855 0.428475 0.411458 0.419794 0.703750 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
2 HBOS 0.021492 0.992499 0.000000 0.000000 0.000000 0.499829 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
3 IForest 13.654450 0.991828 0.425736 0.404948 0.415082 0.700504 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
4 INNE 16.246222 0.991930 0.428044 0.377604 0.401245 0.686983 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
5 KNN 1.089241 0.990247 0.311141 0.298177 0.304521 0.646708 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
6 LODA 1.013922 0.992499 0.000000 0.000000 0.000000 0.499829 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
7 LOF 1.578532 0.987096 0.001618 0.001302 0.001443 0.497754 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
8 MCD 0.110214 0.991855 0.428475 0.411458 0.419794 0.703750 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
9 PCA 0.036325 0.991855 0.428475 0.411458 0.419794 0.703750 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
10 ROD 12.376851 0.988573 0.000000 0.000000 0.000000 0.497852 False pyod 0.007 643500 [amt] 0.006946 214500 0.007161 None
pyod(*pyod_preprocess4(fraudTrain, 0.008))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.107724 0.987197 0.197100 0.201482 0.199267 0.597471 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
1 GMM 0.101690 0.991156 0.442857 0.459569 0.451058 0.727480 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
2 HBOS 0.016904 0.991710 0.000000 0.000000 0.000000 0.499807 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
3 IForest 14.253869 0.991182 0.443861 0.455526 0.449618 0.725488 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
4 INNE 15.132947 0.991193 0.444298 0.454178 0.449184 0.724825 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
5 KNN 0.851337 0.989728 0.357875 0.376685 0.367039 0.685649 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
6 LODA 0.876604 0.991710 0.000000 0.000000 0.000000 0.499807 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
7 LOF 1.358122 0.984964 0.000000 0.000000 0.000000 0.496407 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
8 MCD 0.095074 0.991156 0.442857 0.459569 0.451058 0.727480 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
9 PCA 0.033198 0.991156 0.442857 0.459569 0.451058 0.727480 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
10 ROD 11.736433 0.987858 0.000000 0.000000 0.000000 0.497865 False pyod 0.008 563062 [amt] 0.008031 187688 0.007907 None
pyod(*pyod_preprocess4(fraudTrain, 0.009))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.099683 0.985872 0.220540 0.222149 0.221341 0.607493 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
1 GMM 0.093896 0.990164 0.456106 0.458223 0.457162 0.726619 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
2 HBOS 0.018281 0.990583 0.000000 0.000000 0.000000 0.499809 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
3 IForest 11.115221 0.990350 0.465306 0.453581 0.459369 0.724413 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
4 INNE 12.340797 0.990134 0.454605 0.458223 0.456407 0.726604 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
5 KNN 0.748844 0.988797 0.379426 0.376658 0.378037 0.685519 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
6 LODA 1.080885 0.990583 0.000000 0.000000 0.000000 0.499809 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
7 LOF 1.217433 0.982210 0.002046 0.001989 0.002017 0.496570 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
8 MCD 0.093267 0.990164 0.456106 0.458223 0.457162 0.726619 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
9 PCA 0.037229 0.990164 0.456106 0.458223 0.457162 0.726619 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None
10 ROD 12.339864 0.977996 0.000000 0.000000 0.000000 0.493458 False pyod 0.009 500499 [amt] 0.008987 166834 0.009039 None