[Pyod] 실험계속돌리기

Author

김보람

Published

April 9, 2024

  1. 4/9

  2. 4/9 v2

  3. 4/10 v3

  4. 4/10 v4

  5. 4/10 v5

  6. 4/11 v6

ref: https://pyod.readthedocs.io/en/latest/pyod.models.html#all-models

1. Imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../functions_pyod2.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    

pyod_preprocess4(비율 다 같게)

pyod(*pyod_preprocess4(fraudTrain, 0.05))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.215485 0.942424 0.420667 0.423206 0.421932 0.696378 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
1 GMM 0.057478 0.964802 0.638747 0.670020 0.654010 0.825111 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
2 HBOS 0.921637 0.949817 0.000000 0.000000 0.000000 0.499720 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
3 IForest 1.873893 0.964169 0.633269 0.661301 0.646982 0.820647 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
4 INNE 2.152318 0.964202 0.634541 0.657948 0.646032 0.819075 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
5 KNN 0.105908 0.960306 0.598941 0.606975 0.602931 0.792871 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
6 LODA 0.140978 0.949817 0.000000 0.000000 0.000000 0.499720 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
7 LOF 0.186561 0.906327 0.027182 0.025486 0.026307 0.488916 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
8 MCD 0.017931 0.964802 0.638747 0.670020 0.654010 0.825111 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
9 PCA 0.006987 0.947153 0.468000 0.470825 0.469408 0.721432 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
10 ROD 5.380978 0.900766 0.001340 0.001341 0.001340 0.474549 False pyod 0.05 90090 [amt] 0.050117 30030 0.04965 None
pyod(*pyod_preprocess4(fraudTrain, 0.04))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.023447 0.952208 0.425051 0.394286 0.409091 0.685464 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
1 GMM 0.021602 0.965635 0.598480 0.549841 0.573130 0.766843 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
2 HBOS 0.006001 0.957616 0.000000 0.000000 0.000000 0.499778 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
3 IForest 2.398027 0.965635 0.598344 0.550476 0.573413 0.767146 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
4 INNE 2.700611 0.965795 0.600000 0.554286 0.576238 0.769051 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
5 KNN 0.137947 0.963983 0.576318 0.534603 0.554677 0.758696 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
6 LODA 0.173405 0.957616 0.000000 0.000000 0.000000 0.499778 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
7 LOF 0.236837 0.914593 0.028340 0.031111 0.029661 0.492198 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
8 MCD 0.021117 0.965635 0.598480 0.549841 0.573130 0.766843 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
9 PCA 0.007238 0.957137 0.488420 0.455238 0.471245 0.717178 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
10 ROD 5.345124 0.918536 0.000000 0.000000 0.000000 0.479382 False pyod 0.04 112612 [amt] 0.039347 37538 0.041957 None
pyod(*pyod_preprocess4(fraudTrain, 0.03))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.030533 0.961778 0.385501 0.361270 0.372992 0.671280 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
1 GMM 0.027331 0.969071 0.508772 0.497143 0.502890 0.740774 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
2 HBOS 0.007710 0.968232 0.000000 0.000000 0.000000 0.499845 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
3 IForest 3.194997 0.969091 0.509103 0.497143 0.503052 0.740784 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
4 INNE 3.582502 0.964056 0.427555 0.419683 0.423582 0.700713 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
5 KNN 0.176555 0.969051 0.508442 0.497143 0.502729 0.740763 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
6 LODA 0.233562 0.968232 0.000000 0.000000 0.000000 0.499845 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
7 LOF 0.297428 0.933546 0.030563 0.036190 0.033140 0.499446 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
8 MCD 0.028167 0.969071 0.508772 0.497143 0.502890 0.740774 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
9 PCA 0.009130 0.968032 0.491672 0.468571 0.479844 0.726416 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
10 ROD 6.976347 0.938781 0.000671 0.000635 0.000652 0.484949 False pyod 0.03 150150 [amt] 0.02951 50050 0.031469 None
pyod(*pyod_preprocess4(fraudTrain, 0.02))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.044714 0.974212 0.345406 0.349153 0.347269 0.667946 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
1 GMM 0.048464 0.980060 0.492647 0.499661 0.496129 0.744674 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
2 HBOS 0.010373 0.979900 0.000000 0.000000 0.000000 0.499769 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
3 IForest 4.829999 0.980153 0.494949 0.498305 0.496622 0.744057 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
4 INNE 5.439951 0.978701 0.456461 0.440678 0.448430 0.715081 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
5 KNN 0.304592 0.978475 0.452716 0.457627 0.455158 0.723270 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
6 LODA 0.344242 0.979900 0.000000 0.000000 0.000000 0.499769 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
7 LOF 0.524626 0.959014 0.002484 0.002712 0.002593 0.490446 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
8 MCD 0.040554 0.980060 0.492647 0.499661 0.496129 0.744674 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
9 PCA 0.013512 0.980233 0.496928 0.493559 0.495238 0.741773 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
10 ROD 9.216612 0.955604 0.000000 0.000000 0.000000 0.487378 False pyod 0.02 225225 [amt] 0.020118 75075 0.019647 None
pyod(*pyod_preprocess4(fraudTrain, 0.01))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.085884 0.984968 0.234973 0.232275 0.233616 0.612371 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
1 GMM 0.074160 0.989497 0.467168 0.461175 0.464152 0.727968 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
2 HBOS 0.019325 0.989863 0.000000 0.000000 0.000000 0.499862 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
3 IForest 9.515494 0.989570 0.470669 0.460500 0.465529 0.727670 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
4 INNE 11.160023 0.990050 0.495160 0.449021 0.470963 0.722230 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
5 KNN 0.666262 0.987992 0.389118 0.381499 0.385271 0.687766 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
6 LODA 0.693432 0.989863 0.000000 0.000000 0.000000 0.499862 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
7 LOF 1.075679 0.981239 0.000747 0.000675 0.000709 0.495841 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
8 MCD 0.081412 0.989497 0.467168 0.461175 0.464152 0.727968 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
9 PCA 0.026227 0.989497 0.467168 0.461175 0.464152 0.727968 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
10 ROD 10.522309 0.979880 0.000000 0.000000 0.000000 0.494821 False pyod 0.01 450450 [amt] 0.010046 150150 0.009863 None
pyod(*pyod_preprocess4(fraudTrain, 0.00573))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.156907 0.989948 0.121999 0.127978 0.124917 0.561393 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
1 GMM 0.131852 0.993051 0.384363 0.398230 0.391174 0.697317 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
2 HBOS 0.025950 0.994108 0.000000 0.000000 0.000000 0.499856 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
3 IForest 18.571275 0.993058 0.384565 0.396869 0.390620 0.696644 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
4 INNE 21.641263 0.990383 0.046592 0.036760 0.041096 0.516260 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
5 KNN 1.642282 0.992253 0.313373 0.320626 0.316958 0.658333 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
6 LODA 1.218959 0.994108 0.000000 0.000000 0.000000 0.499856 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
7 LOF 2.041921 0.989193 0.002191 0.002042 0.002114 0.498400 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
8 MCD 0.134544 0.993051 0.384363 0.398230 0.391174 0.697317 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
9 PCA 0.046515 0.993051 0.384363 0.398230 0.391174 0.697317 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
10 ROD 12.957345 0.990639 0.000000 0.000000 0.000000 0.498112 False pyod 0.00573 786126 [amt] 0.005771 262042 0.005606 None
pyod(*pyod_preprocess4(fraudTrain, 0.006))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.150555 0.989758 0.121376 0.125000 0.123161 0.559882 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
1 GMM 0.125489 0.992907 0.388852 0.406944 0.397693 0.701621 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
2 HBOS 0.022511 0.993914 0.000000 0.000000 0.000000 0.499833 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
3 IForest 17.988920 0.992915 0.388926 0.404861 0.396734 0.700590 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
4 INNE 20.341954 0.992040 0.305907 0.302083 0.303983 0.649058 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
5 KNN 1.267952 0.992064 0.311203 0.312500 0.311850 0.654248 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
6 LODA 1.175276 0.993914 0.000000 0.000000 0.000000 0.499833 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
7 LOF 1.946808 0.988779 0.000730 0.000694 0.000712 0.497596 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
8 MCD 0.133159 0.992907 0.388852 0.406944 0.397693 0.701621 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
9 PCA 0.045812 0.992907 0.388852 0.406944 0.397693 0.701621 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
10 ROD 12.714323 0.986681 0.000000 0.000000 0.000000 0.496196 False pyod 0.006 750750 [amt] 0.006082 250250 0.005754 None
pyod(*pyod_preprocess4(fraudTrain, 0.007))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.125775 0.988340 0.162347 0.157512 0.159893 0.575873 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
1 GMM 0.115203 0.992051 0.431108 0.401721 0.415896 0.698980 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
2 HBOS 0.019187 0.992373 0.000000 0.000000 0.000000 0.499707 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
3 IForest 15.196773 0.992084 0.433735 0.405030 0.418891 0.700639 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
4 INNE 17.377946 0.992014 0.408015 0.296492 0.343427 0.646720 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
5 KNN 1.036415 0.990900 0.345912 0.327598 0.336506 0.661602 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
6 LODA 0.997776 0.992373 0.000000 0.000000 0.000000 0.499707 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
7 LOF 1.584724 0.987319 0.002469 0.001985 0.002201 0.498148 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
8 MCD 0.110441 0.992051 0.431108 0.401721 0.415896 0.698980 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
9 PCA 0.037883 0.992051 0.431108 0.401721 0.415896 0.698980 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
10 ROD 10.144907 0.990350 0.000000 0.000000 0.000000 0.498688 False pyod 0.007 643500 [amt] 0.006985 214500 0.007044 None
pyod(*pyod_preprocess4(fraudTrain, 0.008))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.108740 0.986653 0.182051 0.187707 0.184836 0.590426 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
1 GMM 0.098187 0.990964 0.437966 0.426966 0.432396 0.711257 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
2 HBOS 0.016854 0.991592 0.000000 0.000000 0.000000 0.499825 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
3 IForest 12.728060 0.991054 0.442039 0.418374 0.429881 0.707041 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
4 INNE 14.641332 0.991054 0.442039 0.418374 0.429881 0.707041 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
5 KNN 0.855135 0.989445 0.343583 0.339722 0.341642 0.667224 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
6 LODA 0.857619 0.991592 0.000000 0.000000 0.000000 0.499825 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
7 LOF 1.349225 0.984394 0.000000 0.000000 0.000000 0.496197 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
8 MCD 0.099369 0.990964 0.437966 0.426966 0.432396 0.711257 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
9 PCA 0.033864 0.990964 0.437966 0.426966 0.432396 0.711257 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
10 ROD 9.787888 0.985977 0.000000 0.000000 0.000000 0.496995 False pyod 0.008 563062 [amt] 0.00798 187688 0.008061 None
pyod(*pyod_preprocess4(fraudTrain, 0.009))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ECOD 0.098144 0.985728 0.218543 0.215545 0.217034 0.604203 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
1 GMM 0.082140 0.990104 0.460784 0.460483 0.460634 0.727746 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
2 HBOS 0.014923 0.990446 0.000000 0.000000 0.000000 0.499809 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
3 IForest 12.402523 0.990152 0.463012 0.457871 0.460427 0.726476 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
4 INNE 12.438793 0.990128 0.461436 0.453298 0.457331 0.724199 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
5 KNN 0.742061 0.988683 0.381710 0.376225 0.378947 0.685290 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
6 LODA 0.745574 0.990446 0.000000 0.000000 0.000000 0.499809 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
7 LOF 1.171870 0.982480 0.001433 0.001306 0.001367 0.496437 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
8 MCD 0.089324 0.990104 0.460784 0.460483 0.460634 0.727746 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
9 PCA 0.030662 0.990104 0.460784 0.460483 0.460634 0.727746 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None
10 ROD 9.356593 0.977894 0.000463 0.000653 0.000542 0.493799 False pyod 0.009 500499 [amt] 0.008941 166834 0.009177 None

pyod_preprocess7

def pyod_preprocess7(fraudTrain, ratio, n):
    
    df50 = throw(fraudTrain,ratio)
    df_tr, a= sklearn.model_selection.train_test_split(df50)
        
    dfn = fraudTrain[::n]
    dfnn = dfn[~dfn.index.isin(df_tr.index)]
    dfnn = dfnn.reset_index(drop=True)
    b, df_tst = sklearn.model_selection.train_test_split(dfnn)   
    df2, mask = concat(df_tr, df_tst)
    df2['index'] = df2.index
    df = df2.reset_index()
    
    
    X = pd.DataFrame(df_tr['amt'])
    y = pd.DataFrame(df_tr['is_fraud'])
    XX = pd.DataFrame(df_tst['amt'])
    yy = pd.DataFrame(df_tst['is_fraud'])
    fraud_ratio = df.is_fraud.mean()
    predictors = {
    'ABOD': ABOD(contamination=fraud_ratio),
#    'ALAD': ALAD(contamination=fraud_ratio),
#    'AnoGAN': AnoGAN(contamination=fraud_ratio),
#    'AutoEncoder':AutoEncoder(contamination=fraud_ratio),
##    'CBLOF': CBLOF(contamination=fraud_ratio,n_clusters=2),
##    'COF': COF(contamination=fraud_ratio),
##    'CD': CD(contamination=fraud_ratio),
    'COPOD': COPOD(contamination=fraud_ratio),
#    'DeepSVDD': DeepSVDD(contamination=fraud_ratio),
#    'DIF': DIF(contamination=fraud_ratio),    
    'ECOD': ECOD(contamination=fraud_ratio),
#    'FeatureBagging': FeatureBagging(contamination=fraud_ratio),
    'GMM': GMM(contamination=fraud_ratio),
    'HBOS': HBOS(contamination=fraud_ratio),
    'IForest': IForest(contamination=fraud_ratio),
    'INNE': INNE(contamination=fraud_ratio),
    'KDE': KDE(contamination=fraud_ratio),
    'KNN': KNN(contamination=fraud_ratio),
####    'KPCA': KPCA(contamination=fraud_ratio),
#    'PyODKernelPCA': PyODKernelPCA(contamination=fraud_ratio),
##    'LMDD': LMDD(contamination=fraud_ratio),
    'LODA': LODA(contamination=fraud_ratio),
    'LOF': LOF(contamination=fraud_ratio),
####    'LOCI': LOCI(contamination=fraud_ratio),
#    'LUNAR': LUNAR(contamination=fraud_ratio),
    'LODA': LODA(contamination=fraud_ratio),
#    'LSCP': LSCP(contamination=fraud_ratio),
#    'MAD': MAD(contamination=fraud_ratio),
    'MCD': MCD(contamination=fraud_ratio),
#    'MO_GAAL': MO_GAAL(contamination=fraud_ratio),
    'OCSVM': OCSVM(contamination=fraud_ratio),
    'PCA': PCA(contamination=fraud_ratio),
###    'QMCD': QMCD(contamination=fraud_ratio),
####    'RGraph': RGraph(contamination=fraud_ratio),
    'ROD': ROD(contamination=fraud_ratio),
##    'Sampling': Sampling(contamination=fraud_ratio),
##   'SOD': SOD(contamination=fraud_ratio),
#    'SO_GAAL': SO_GAAL(contamination=fraud_ratio),
####    'SOS': SOS(contamination=fraud_ratio),
#    'SUOD': SUOD(contamination=fraud_ratio),
#    'VAE': VAE(contamination=fraud_ratio),
#    'XGBOD': XGBOD(contamination=fraud_ratio),  
}
    return X, XX, y, yy, predictors, fraud_ratio

def pyod(X,XX,y,yy,predictors,throw_rate):
    model = []
    time_diff = []
    acc = []
    pre = []
    rec = []
    f1 = [] 
    auc = [] 
    graph_based = []
    method = [] 
    train_size = []
    train_cols = []
    train_frate = []
    test_size = []
    test_frate = []
    hyper_params = [] 
    for name, predictor in predictors.items():
        t1 = time.time()
        predictor.fit(X,y)
        t2 = time.time()
        yyhat = predictor.predict(XX)
        scores = evaluate(yy,yyhat)
        model.append(name)
        time_diff.append(t2-t1)
        acc.append(scores['acc'])
        pre.append(scores['pre'])
        rec.append(scores['rec'])
        f1.append(scores['f1'])
        auc.append(scores['auc'])
        graph_based.append(False)
        method.append('pyod')
        train_size.append(len(y)),
        train_cols.append(list(X.columns)),
        train_frate.append(np.array(y).reshape(-1).mean()),
        test_size.append(len(yy)),
        test_frate.append(np.array(yy).reshape(-1).mean())
        hyper_params.append(None)
    df_results = pd.DataFrame(dict(
        model = model,
        time=time_diff,
        acc=acc,
        pre=pre,
        rec=rec,
        f1=f1,
        auc=auc,
        graph_based = graph_based,
        method = method,
        throw_rate = throw_rate,
        train_size = train_size,
        train_cols = train_cols,
        train_frate = train_frate,
        test_size = test_size,
        test_frate = test_frate,
        hyper_params = hyper_params
    ))
    ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
    df_results.to_csv(f'../results/{ymdhms}-pyod.csv',index=False)
    return df_results
pyod(*pyod_preprocess7(fraudTrain, 0.1,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 2.535909 0.998444 0.000000 0.000000 0.000000 0.500000 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
1 COPOD 0.009517 0.976746 0.042088 0.641026 0.078989 0.809147 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
2 ECOD 0.009471 0.960791 0.013402 0.333333 0.025768 0.647551 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
3 GMM 0.011066 0.984564 0.042105 0.410256 0.076372 0.697858 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
4 HBOS 0.003393 0.998245 0.000000 0.000000 0.000000 0.499900 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
5 IForest 1.049790 0.984644 0.042328 0.410256 0.076739 0.697897 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
6 INNE 1.078408 0.983407 0.041363 0.435897 0.075556 0.710079 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
7 KDE 50.022221 0.982729 0.041860 0.461538 0.076759 0.722540 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
8 KNN 0.050192 0.980575 0.031381 0.384615 0.058027 0.683060 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
9 LODA 0.073967 0.998245 0.000000 0.000000 0.000000 0.499900 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
10 LOF 0.087011 0.924973 0.003772 0.179487 0.007388 0.552811 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
11 MCD 0.009805 0.984564 0.042105 0.410256 0.076372 0.697858 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
12 OCSVM 131.738376 0.982211 0.038549 0.435897 0.070833 0.709480 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
13 PCA 0.004337 0.973994 0.018838 0.307692 0.035503 0.641362 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
14 ROD 3.712238 0.928722 0.000000 0.000000 0.000000 0.465085 False pyod 0.063751 45045 [amt] 0.098368 25071 0.001556 None
pyod(*pyod_preprocess7(fraudTrain, 0.2,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.149793 0.998674 0.000000 0.000000 0.000000 0.500000 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
1 COPOD 0.005654 0.970952 0.027888 0.617647 0.053367 0.794534 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
2 ECOD 0.005484 0.944516 0.010571 0.441176 0.020647 0.693180 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
3 GMM 0.007448 0.994931 0.112903 0.411765 0.177215 0.703735 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
4 HBOS 0.002558 0.998323 0.000000 0.000000 0.000000 0.499824 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
5 IForest 0.598845 0.981986 0.024444 0.323529 0.045455 0.653195 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
6 INNE 0.580197 0.966507 0.012987 0.323529 0.024972 0.645445 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
7 KDE 11.685877 0.979959 0.025692 0.382353 0.048148 0.681552 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
8 KNN 0.023973 0.978048 0.018215 0.294118 0.034305 0.636537 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
9 LODA 0.041146 0.998323 0.000000 0.000000 0.000000 0.499824 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
10 LOF 0.040807 0.882208 0.002333 0.205882 0.004613 0.544494 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
11 MCD 0.006230 0.994931 0.112903 0.411765 0.177215 0.703735 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
12 OCSVM 27.242269 0.979413 0.028626 0.441176 0.053763 0.710652 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
13 PCA 0.003173 0.919250 0.002443 0.147059 0.004805 0.533667 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
14 ROD 2.774923 0.907670 0.000000 0.000000 0.000000 0.454437 False pyod 0.094293 22522 [amt] 0.20016 25647 0.001326 None
pyod(*pyod_preprocess7(fraudTrain, 0.3,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.807096 0.998800 0.000000 0.000000 0.000000 0.500000 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
1 COPOD 0.004366 0.965822 0.023490 0.677419 0.045405 0.821794 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
2 ECOD 0.004172 0.931256 0.004543 0.258065 0.008929 0.595065 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
3 GMM 0.006388 0.995239 0.057692 0.193548 0.088889 0.594875 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
4 HBOS 0.002274 0.998452 0.000000 0.000000 0.000000 0.499826 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
5 IForest 0.454341 0.982079 0.011312 0.161290 0.021142 0.572177 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
6 INNE 0.404955 0.931682 0.001151 0.064516 0.002261 0.498620 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
7 KDE 4.877100 0.969654 0.007843 0.193548 0.015075 0.582067 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
8 KNN 0.017089 0.971163 0.006906 0.161290 0.013245 0.566713 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
9 LODA 0.030604 0.998452 0.000000 0.000000 0.000000 0.499826 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
10 LOF 0.029848 0.854151 0.000801 0.096774 0.001590 0.475918 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
11 MCD 0.005008 0.995239 0.057692 0.193548 0.088889 0.594875 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
12 OCSVM 10.923152 0.967757 0.007371 0.193548 0.014201 0.581118 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
13 PCA 0.002875 0.843313 0.000000 0.000000 0.000000 0.422163 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
14 ROD 1.926554 0.998761 0.000000 0.000000 0.000000 0.499981 False pyod 0.111579 15015 [amt] 0.301499 25835 0.0012 None
pyod(*pyod_preprocess7(fraudTrain, 0.4,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.628257 0.998264 0.000000 0.000000 0.000000 0.500000 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
1 COPOD 0.003717 0.963166 0.036660 0.800000 0.070107 0.881725 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
2 ECOD 0.003578 0.925753 0.010926 0.466667 0.021352 0.696609 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
3 GMM 0.006066 0.995102 0.140351 0.355556 0.201258 0.675885 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
4 HBOS 0.002137 0.998072 0.000000 0.000000 0.000000 0.499903 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
5 IForest 0.371490 0.979288 0.028736 0.333333 0.052910 0.656872 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
6 INNE 0.317849 0.911174 0.002205 0.111111 0.004323 0.511838 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
7 KDE 2.806262 0.949744 0.009360 0.266667 0.018086 0.608799 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
8 KNN 0.012062 0.962086 0.010438 0.222222 0.019940 0.592797 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
9 LODA 0.025498 0.998072 0.000000 0.000000 0.000000 0.499903 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
10 LOF 0.020565 0.848768 0.001543 0.133333 0.003051 0.491672 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
11 MCD 0.004548 0.995102 0.140351 0.355556 0.201258 0.675885 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
12 OCSVM 6.097080 0.950052 0.010955 0.311111 0.021164 0.631137 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
13 PCA 0.002755 0.810198 0.000000 0.000000 0.000000 0.405803 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
14 ROD 1.610515 0.998264 0.000000 0.000000 0.000000 0.500000 False pyod 0.122109 11261 [amt] 0.399254 25927 0.001736 None
pyod(*pyod_preprocess7(fraudTrain, 0.5,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.513475 0.998845 0.000000 0.000000 0.000000 0.500000 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
1 COPOD 0.003306 0.961928 0.022886 0.766667 0.044444 0.864410 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
2 ECOD 0.003209 0.921161 0.005392 0.366667 0.010628 0.644234 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
3 GMM 0.005530 0.996266 0.096386 0.266667 0.141593 0.631888 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
4 HBOS 0.002074 0.998614 0.000000 0.000000 0.000000 0.499884 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
5 IForest 0.324964 0.942180 0.002703 0.133333 0.005298 0.538224 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
6 INNE 0.261853 0.875313 0.000933 0.100000 0.001849 0.488105 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
7 KDE 1.900880 0.941564 0.003338 0.166667 0.006545 0.554563 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
8 KNN 0.009369 0.954498 0.004303 0.166667 0.008389 0.561038 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
9 LODA 0.021968 0.998614 0.000000 0.000000 0.000000 0.499884 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
10 LOF 0.015975 0.831851 0.000691 0.100000 0.001372 0.466349 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
11 MCD 0.004099 0.996266 0.096386 0.266667 0.141593 0.631888 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
12 OCSVM 3.776082 0.942488 0.004065 0.200000 0.007968 0.571673 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
13 PCA 0.002546 0.783000 0.000000 0.000000 0.000000 0.391953 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
14 ROD 1.637666 0.998845 0.000000 0.000000 0.000000 0.500000 False pyod 0.128852 9009 [amt] 0.497058 25977 0.001155 None
pyod(*pyod_preprocess7(fraudTrain, 0.09,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 3.230120 0.998237 0.000000 0.000000 0.000000 0.500000 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
1 COPOD 0.011822 0.977284 0.052991 0.704545 0.098569 0.841155 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
2 ECOD 0.011770 0.964223 0.022497 0.454545 0.042872 0.709834 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
3 GMM 0.055667 0.983253 0.063084 0.613636 0.114407 0.798771 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
4 HBOS 0.004632 0.997837 0.000000 0.000000 0.000000 0.499799 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
5 IForest 1.450632 0.982973 0.060046 0.590909 0.109015 0.787287 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
6 INNE 1.661278 0.977644 0.037770 0.477273 0.070000 0.727900 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
7 KDE 71.262674 0.982412 0.060134 0.613636 0.109533 0.798350 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
8 KNN 0.061291 0.980569 0.049080 0.545455 0.090056 0.763396 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
9 LODA 0.131766 0.997837 0.000000 0.000000 0.000000 0.499799 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
10 LOF 0.134313 0.924880 0.002175 0.090909 0.004249 0.508631 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
11 MCD 0.012015 0.983253 0.063084 0.613636 0.114407 0.798771 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
12 OCSVM 187.261724 0.981611 0.055675 0.590909 0.101761 0.786605 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
13 PCA 0.014000 0.978446 0.037453 0.454545 0.069204 0.716958 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
14 ROD 7.488965 0.938101 0.000000 0.000000 0.000000 0.469879 False pyod 0.060459 50049 [amt] 0.089732 24960 0.001763 None
pyod(*pyod_preprocess7(fraudTrain, 0.08,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 4.189796 0.998226 0.000000 0.000000 0.000000 0.500000 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
1 COPOD 0.014530 0.976777 0.041379 0.545455 0.076923 0.761499 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
2 ECOD 0.014443 0.965811 0.019139 0.363636 0.036364 0.665259 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
3 GMM 0.038358 0.983067 0.048077 0.454545 0.086957 0.719276 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
4 HBOS 0.004105 0.997944 0.000000 0.000000 0.000000 0.499859 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
5 IForest 1.553486 0.983389 0.049020 0.454545 0.088496 0.719437 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
6 INNE 1.848711 0.982502 0.048611 0.477273 0.088235 0.730336 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
7 KDE 88.011782 0.982220 0.045767 0.454545 0.083160 0.718852 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
8 KNN 0.071372 0.980809 0.036481 0.386364 0.066667 0.684114 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
9 LODA 0.137621 0.997944 0.000000 0.000000 0.000000 0.499859 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
10 LOF 0.159186 0.930371 0.001776 0.068182 0.003462 0.500043 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
11 MCD 0.013139 0.983067 0.048077 0.454545 0.086957 0.719276 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
12 OCSVM 260.031710 0.981131 0.043103 0.454545 0.078740 0.718306 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
13 PCA 0.005343 0.977140 0.028829 0.363636 0.053422 0.670933 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
14 ROD 6.357995 0.939322 0.000000 0.000000 0.000000 0.470496 False pyod 0.05627 56306 [amt] 0.080276 24803 0.001774 None
pyod(*pyod_preprocess7(fraudTrain, 0.07,10))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 2.958657 0.998740 0.000000 0.000000 0.000000 0.500000 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
1 COPOD 0.014501 0.978627 0.039106 0.677419 0.073944 0.828213 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
2 ECOD 0.014122 0.969241 0.019841 0.483871 0.038119 0.726862 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
3 GMM 0.048176 0.983422 0.045783 0.612903 0.085202 0.798396 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
4 HBOS 0.004385 0.998497 0.000000 0.000000 0.000000 0.499878 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
5 IForest 1.564718 0.983422 0.045783 0.612903 0.085202 0.798396 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
6 INNE 1.577002 0.983463 0.041463 0.548387 0.077098 0.766199 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
7 KDE 123.222591 0.983056 0.044811 0.612903 0.083516 0.798213 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
8 KNN 0.075100 0.980700 0.031646 0.483871 0.059406 0.732599 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
9 LODA 0.157073 0.998497 0.000000 0.000000 0.000000 0.499878 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
10 LOF 0.204140 0.946528 0.000777 0.032258 0.001517 0.489970 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
11 MCD 0.015097 0.983422 0.045783 0.612903 0.085202 0.798396 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
12 OCSVM 256.638857 0.982488 0.043379 0.612903 0.081023 0.797928 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
13 PCA 0.005676 0.978668 0.028626 0.483871 0.054054 0.731582 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
14 ROD 6.052641 0.946325 0.000000 0.000000 0.000000 0.473759 False pyod 0.050606 64350 [amt] 0.069479 24611 0.00126 None
pyod(*pyod_preprocess7(fraudTrain, 0.06,10))
pyod(*pyod_preprocess7(fraudTrain, 0.05,10))
pyod(*pyod_preprocess7(fraudTrain, 0.04,10))
pyod(*pyod_preprocess7(fraudTrain, 0.03,10))
pyod(*pyod_preprocess7(fraudTrain, 0.02,10))
pyod(*pyod_preprocess7(fraudTrain, 0.01,10))

pyod_preproecess10: 비율 다르게 test_size정할수 잇음

pyod(*pyod_preprocess10(fraudTrain, 0.3, 0.05))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.774618 0.950050 0.000000 0.000000 0.000000 0.500000 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
1 COPOD 0.004098 0.749417 0.138138 0.766667 0.234097 0.757589 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
2 ECOD 0.003965 0.719447 0.116768 0.703333 0.200285 0.711814 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
3 GMM 0.006296 0.706294 0.093785 0.563333 0.160799 0.638572 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
4 HBOS 0.002163 0.949717 0.000000 0.000000 0.000000 0.499825 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
5 IForest 0.421494 0.825674 0.189526 0.760000 0.303393 0.794564 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
6 INNE 0.374009 0.779387 0.140855 0.670000 0.232774 0.727569 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
7 KDE 4.314706 0.845155 0.213115 0.780000 0.334764 0.814290 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
8 KNN 0.015324 0.816683 0.176755 0.730000 0.284600 0.775620 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
9 LODA 0.028843 0.949717 0.000000 0.000000 0.000000 0.499825 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
10 LOF 0.026128 0.511988 0.051483 0.503333 0.093412 0.507888 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
11 MCD 0.004677 0.847486 0.215867 0.780000 0.338150 0.815517 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
12 OCSVM 8.785761 0.808525 0.171561 0.740000 0.278545 0.776064 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
13 PCA 0.002809 0.454545 0.020619 0.213333 0.037603 0.340280 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
14 ROD 1.670733 0.583417 0.027062 0.210000 0.047945 0.406525 False pyod 0.3 14014 [amt] 0.407164 6006 0.04995 None
pyod(*pyod_preprocess10(fraudTrain, 0.3, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.769284 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
1 COPOD 0.004046 0.722611 0.015976 0.900000 0.031395 0.810860 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
2 ECOD 0.003975 0.712121 0.013738 0.800000 0.027012 0.755840 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
3 GMM 0.006271 0.703130 0.010609 0.633333 0.020868 0.668407 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
4 HBOS 0.002160 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
5 IForest 0.423568 0.837496 0.027000 0.900000 0.052427 0.868591 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
6 INNE 0.371282 0.764902 0.014747 0.700000 0.028886 0.732614 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
7 KDE 4.280936 0.835498 0.026680 0.900000 0.051823 0.867587 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
8 KNN 0.015303 0.805361 0.020219 0.800000 0.039441 0.802694 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
9 LODA 0.028646 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
10 LOF 0.026170 0.494339 0.003632 0.366667 0.007192 0.430823 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
11 MCD 0.004618 0.835997 0.026759 0.900000 0.051973 0.867838 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
12 OCSVM 8.879913 0.776557 0.019062 0.866667 0.037303 0.821386 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
13 PCA 0.002808 0.419414 0.000866 0.100000 0.001718 0.260509 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
14 ROD 1.891805 0.561605 0.001150 0.100000 0.002274 0.331961 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.2, 0.05))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.091977 0.950050 0.000000 0.000000 0.000000 0.500000 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
1 COPOD 0.005299 0.855256 0.223803 0.768889 0.346693 0.814343 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
2 ECOD 0.005203 0.806971 0.151056 0.620000 0.242926 0.718401 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
3 GMM 0.007281 0.807193 0.136646 0.537778 0.217920 0.679568 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
4 HBOS 0.002413 0.949828 0.000000 0.000000 0.000000 0.499883 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
5 IForest 0.563117 0.907759 0.321796 0.764444 0.452930 0.839869 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
6 INNE 0.537732 0.903985 0.309458 0.748889 0.437947 0.830514 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
7 KDE 10.283546 0.905206 0.313653 0.755556 0.443286 0.834315 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
8 KNN 0.021698 0.894439 0.283865 0.731111 0.408950 0.817069 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
9 LODA 0.039037 0.949828 0.000000 0.000000 0.000000 0.499883 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
10 LOF 0.037507 0.662893 0.055040 0.355556 0.095323 0.517303 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
11 MCD 0.005883 0.908980 0.325142 0.764444 0.456233 0.840512 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
12 OCSVM 20.635448 0.905428 0.314233 0.755556 0.443864 0.834432 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
13 PCA 0.003042 0.667999 0.027520 0.164444 0.047149 0.429459 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
14 ROD 2.520514 0.688534 0.017609 0.095556 0.029737 0.407633 False pyod 0.2 21021 [amt] 0.264307 9009 0.04995 None
pyod(*pyod_preprocess10(fraudTrain, 0.2, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.095272 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
1 COPOD 0.005250 0.837829 0.024194 0.800000 0.046967 0.819009 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
2 ECOD 0.005125 0.805639 0.016988 0.666667 0.033131 0.736502 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
3 GMM 0.007286 0.804973 0.013636 0.533333 0.026593 0.669835 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
4 HBOS 0.002410 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
5 IForest 0.563799 0.909757 0.042857 0.800000 0.081356 0.855154 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
6 INNE 0.528354 0.892219 0.034205 0.755556 0.065448 0.824230 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
7 KDE 10.531130 0.903985 0.040359 0.800000 0.076841 0.852253 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
8 KNN 0.021430 0.893884 0.033777 0.733333 0.064579 0.814012 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
9 LODA 0.038733 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
10 LOF 0.037428 0.660340 0.004926 0.333333 0.009709 0.497657 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
11 MCD 0.005760 0.908314 0.042204 0.800000 0.080178 0.854429 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
12 OCSVM 20.519797 0.902875 0.039911 0.800000 0.076030 0.851696 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
13 PCA 0.003253 0.669331 0.002037 0.133333 0.004012 0.402677 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
14 ROD 2.924760 0.744145 0.000442 0.022222 0.000867 0.384996 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.2, 0.0005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.092710 0.999556 0.000000 0.00 0.000000 0.500000 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
1 COPOD 0.005288 0.835942 0.002027 0.75 0.004043 0.792990 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
2 ECOD 0.005159 0.805528 0.001710 0.75 0.003413 0.777776 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
3 GMM 0.010358 0.804529 0.000569 0.25 0.001134 0.527388 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
4 HBOS 0.002431 0.999223 0.000000 0.00 0.000000 0.499833 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
5 IForest 0.564802 0.908536 0.003632 0.75 0.007229 0.829303 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
6 INNE 0.526330 0.856921 0.001552 0.50 0.003094 0.678540 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
7 KDE 10.406649 0.904096 0.003464 0.75 0.006897 0.827082 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
8 KNN 0.021723 0.894439 0.002103 0.50 0.004188 0.697307 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
9 LODA 0.039089 0.999223 0.000000 0.00 0.000000 0.499833 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
10 LOF 0.037239 0.661672 0.000984 0.75 0.001965 0.705816 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
11 MCD 0.005762 0.908425 0.003628 0.75 0.007220 0.829248 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
12 OCSVM 20.567278 0.902431 0.003405 0.75 0.006780 0.826249 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
13 PCA 0.003019 0.671329 0.000000 0.00 0.000000 0.335813 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
14 ROD 2.454930 0.748363 0.000000 0.00 0.000000 0.374348 False pyod 0.2 21021 [amt] 0.285524 9009 0.000444 None
pyod(*pyod_preprocess10(fraudTrain, 0.1, 0.05))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.946881 0.950050 0.000000 0.000000 0.000000 0.500000 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
1 COPOD 0.008923 0.940004 0.442246 0.770000 0.561816 0.859471 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
2 ECOD 0.008774 0.900155 0.251245 0.504444 0.335427 0.712702 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
3 GMM 0.010457 0.955045 0.535322 0.757778 0.627415 0.861597 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
4 HBOS 0.003158 0.949495 0.000000 0.000000 0.000000 0.499708 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
5 IForest 0.962415 0.952103 0.514111 0.748889 0.609679 0.855838 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
6 INNE 1.006637 0.955156 0.535881 0.763333 0.629698 0.864287 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
7 KDE 43.868710 0.947441 0.482682 0.727778 0.580416 0.843384 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
8 KNN 0.044747 0.941947 0.446715 0.680000 0.539207 0.817860 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
9 LODA 0.084089 0.949495 0.000000 0.000000 0.000000 0.499708 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
10 LOF 0.076161 0.821567 0.075541 0.228889 0.113593 0.540809 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
11 MCD 0.009043 0.955433 0.537802 0.766667 0.632158 0.866012 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
12 OCSVM 92.559464 0.945943 0.473188 0.725556 0.572807 0.841543 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
13 PCA 0.004151 0.890054 0.195493 0.385556 0.259439 0.651067 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
14 ROD 3.441422 0.822233 0.001299 0.003333 0.001870 0.434311 False pyod 0.1 42042 [amt] 0.12145 18018 0.04995 None
pyod(*pyod_preprocess10(fraudTrain, 0.3, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.771734 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
1 COPOD 0.004185 0.722611 0.015976 0.900000 0.031395 0.810860 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
2 ECOD 0.004011 0.712121 0.013738 0.800000 0.027012 0.755840 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
3 GMM 0.006114 0.703130 0.010609 0.633333 0.020868 0.668407 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
4 HBOS 0.002146 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
5 IForest 0.422542 0.822178 0.024725 0.900000 0.048128 0.860894 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
6 INNE 0.359052 0.640693 0.007863 0.566667 0.015511 0.603865 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
7 KDE 4.289624 0.835498 0.026680 0.900000 0.051823 0.867587 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
8 KNN 0.015256 0.805361 0.020219 0.800000 0.039441 0.802694 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
9 LODA 0.029047 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
10 LOF 0.026283 0.494339 0.003632 0.366667 0.007192 0.430823 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
11 MCD 0.004666 0.835997 0.026759 0.900000 0.051973 0.867838 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
12 OCSVM 8.597896 0.776557 0.019062 0.866667 0.037303 0.821386 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
13 PCA 0.002833 0.419414 0.000866 0.100000 0.001718 0.260509 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
14 ROD 1.817225 0.561605 0.001150 0.100000 0.002274 0.331961 False pyod 0.3 14014 [amt] 0.426431 6006 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.2, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.079066 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
1 COPOD 0.005168 0.837829 0.024194 0.800000 0.046967 0.819009 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
2 ECOD 0.005130 0.805639 0.016988 0.666667 0.033131 0.736502 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
3 GMM 0.007339 0.804973 0.013636 0.533333 0.026593 0.669835 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
4 HBOS 0.002404 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
5 IForest 0.569661 0.907981 0.042056 0.800000 0.079911 0.854261 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
6 INNE 0.514986 0.877123 0.029255 0.733333 0.056266 0.805589 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
7 KDE 10.367432 0.903985 0.040359 0.800000 0.076841 0.852253 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
8 KNN 0.021266 0.893884 0.033777 0.733333 0.064579 0.814012 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
9 LODA 0.038907 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
10 LOF 0.036725 0.660340 0.004926 0.333333 0.009709 0.497657 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
11 MCD 0.005748 0.908314 0.042204 0.800000 0.080178 0.854429 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
12 OCSVM 20.289997 0.902875 0.039911 0.800000 0.076030 0.851696 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
13 PCA 0.003034 0.669331 0.002037 0.133333 0.004012 0.402677 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
14 ROD 2.956641 0.744145 0.000442 0.022222 0.000867 0.384996 False pyod 0.2 21021 [amt] 0.283574 9009 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.09, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 2.118368 0.995005 0.000000 0.00 0.000000 0.500000 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
1 COPOD 0.009918 0.936810 0.059046 0.78 0.109782 0.858799 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
2 ECOD 0.009780 0.910435 0.029461 0.53 0.055819 0.721172 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
3 GMM 0.012681 0.963784 0.097812 0.76 0.173318 0.862404 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
4 HBOS 0.003287 0.994655 0.000000 0.00 0.000000 0.499824 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
5 IForest 1.057976 0.958190 0.081725 0.72 0.146789 0.839693 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
6 INNE 1.072577 0.962436 0.089421 0.71 0.158837 0.836851 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
7 KDE 51.495988 0.956491 0.080522 0.74 0.145240 0.848789 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
8 KNN 0.050351 0.953644 0.069647 0.67 0.126177 0.812534 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
9 LODA 0.075929 0.994655 0.000000 0.00 0.000000 0.499824 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
10 LOF 0.086652 0.839752 0.004780 0.15 0.009265 0.496608 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
11 MCD 0.009637 0.966032 0.103825 0.76 0.182692 0.863533 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
12 OCSVM 116.052746 0.955992 0.078749 0.73 0.142162 0.843563 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
13 PCA 0.004285 0.901444 0.017517 0.34 0.033317 0.622131 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
14 ROD 4.076229 0.850242 0.000345 0.01 0.000667 0.432230 False pyod 0.09 46714 [amt] 0.126429 20019 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.08, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 2.355942 0.995027 0.000000 0.000000 0.000000 0.500000 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
1 COPOD 0.011052 0.945076 0.064965 0.750000 0.119573 0.848025 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
2 ECOD 0.010783 0.924296 0.033392 0.508929 0.062672 0.717650 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
3 GMM 0.011898 0.968431 0.106439 0.723214 0.185567 0.846435 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
4 HBOS 0.003509 0.994583 0.000000 0.000000 0.000000 0.499777 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
5 IForest 1.144744 0.967587 0.101804 0.705357 0.177928 0.837127 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
6 INNE 1.216866 0.967587 0.100775 0.696429 0.176072 0.832686 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
7 KDE 64.947974 0.962703 0.089165 0.705357 0.158317 0.834673 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
8 KNN 0.059123 0.958929 0.074346 0.633929 0.133083 0.797241 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
9 LODA 0.083192 0.994583 0.000000 0.000000 0.000000 0.499777 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
10 LOF 0.101365 0.853921 0.004367 0.125000 0.008439 0.491282 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
11 MCD 0.010848 0.970429 0.114206 0.732143 0.197590 0.851881 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
12 OCSVM 147.615001 0.961105 0.085683 0.705357 0.152805 0.833870 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
13 PCA 0.004609 0.922787 0.023433 0.357143 0.043980 0.641378 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
14 ROD 6.129475 0.872081 0.000361 0.008929 0.000694 0.442662 False pyod 0.08 52553 [amt] 0.112153 22522 0.004973 None
pyod(*pyod_preprocess10(fraudTrain, 0.07, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 2.627215 0.995027 0.000000 0.000000 0.000000 0.500000 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
1 COPOD 0.012201 0.951360 0.073596 0.757812 0.134163 0.855070 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
2 ECOD 0.011990 0.932129 0.035571 0.484375 0.066275 0.709371 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
3 GMM 0.013061 0.972416 0.122078 0.734375 0.209354 0.853991 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
4 HBOS 0.003768 0.994639 0.000000 0.000000 0.000000 0.499805 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
5 IForest 1.307437 0.970008 0.112981 0.734375 0.195833 0.852780 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
6 INNE 1.337039 0.972688 0.123198 0.734375 0.210999 0.854127 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
7 KDE 84.247617 0.965035 0.094538 0.703125 0.166667 0.834734 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
8 KNN 0.070247 0.964452 0.087958 0.656250 0.155125 0.811121 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
9 LODA 0.094346 0.994639 0.000000 0.000000 0.000000 0.499805 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
10 LOF 0.120878 0.880575 0.005040 0.117188 0.009665 0.500789 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
11 MCD 0.011881 0.972416 0.122078 0.734375 0.209354 0.853991 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
12 OCSVM 201.603599 0.965229 0.095037 0.703125 0.167442 0.834832 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
13 PCA 0.004737 0.936713 0.031815 0.398438 0.058925 0.668920 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
14 ROD 4.642633 0.886869 0.000359 0.007812 0.000686 0.449537 False pyod 0.07 60060 [amt] 0.097869 25740 0.004973 None
pyod(*pyod_preprocess10(fraudTrain, 0.06, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 2.976102 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
1 COPOD 0.014337 0.956876 0.079353 0.720000 0.142952 0.839033 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
2 ECOD 0.014195 0.938795 0.039301 0.480000 0.072654 0.710549 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
3 GMM 0.014622 0.974126 0.127229 0.713333 0.215943 0.844384 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
4 HBOS 0.004169 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
5 IForest 1.487215 0.971395 0.114255 0.700000 0.196445 0.836379 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
6 INNE 1.617119 0.974659 0.129697 0.713333 0.219487 0.844652 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
7 KDE 130.171108 0.968165 0.100990 0.680000 0.175862 0.824806 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
8 KNN 0.074384 0.967766 0.092629 0.620000 0.161179 0.794756 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
9 LODA 0.111742 0.994672 0.000000 0.000000 0.000000 0.499833 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
10 LOF 0.126019 0.902231 0.002500 0.046667 0.004746 0.476596 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
11 MCD 0.013644 0.974126 0.127229 0.713333 0.215943 0.844384 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
12 OCSVM 301.447370 0.967566 0.098441 0.673333 0.171769 0.821188 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
13 PCA 0.005391 0.944988 0.038130 0.413333 0.069820 0.680495 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
14 ROD 4.724332 0.902131 0.000716 0.013333 0.001359 0.459963 False pyod 0.06 70070 [amt] 0.083574 30030 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.05, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 3.488629 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
1 COPOD 0.016961 0.965673 0.098099 0.716667 0.172575 0.841795 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
2 ECOD 0.016851 0.951632 0.049048 0.472222 0.088866 0.713130 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
3 GMM 0.016793 0.977966 0.143023 0.683333 0.236538 0.831389 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
4 HBOS 0.004723 0.993451 0.075758 0.027778 0.040650 0.513038 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
5 IForest 1.739545 0.977522 0.142857 0.700000 0.237288 0.839458 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
6 INNE 1.911777 0.975941 0.129450 0.666667 0.216802 0.822080 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
7 KDE 187.149441 0.971917 0.108286 0.638889 0.185185 0.806239 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
8 KNN 0.094257 0.971612 0.104225 0.616667 0.178313 0.795030 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
9 LODA 0.131656 0.993451 0.075758 0.027778 0.040650 0.513038 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
10 LOF 0.160287 0.919192 0.002549 0.038889 0.004785 0.481250 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
11 MCD 0.015904 0.977966 0.143023 0.683333 0.236538 0.831389 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
12 OCSVM 487.274559 0.972167 0.109953 0.644444 0.187854 0.809128 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
13 PCA 0.006028 0.958930 0.054184 0.438889 0.096459 0.700215 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
14 ROD 5.554918 0.921023 0.000749 0.011111 0.001404 0.468351 False pyod 0.05 84084 [amt] 0.069288 36036 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.15, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 1.375164 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
1 COPOD 0.006505 0.882118 0.034341 0.833333 0.065963 0.857848 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
2 ECOD 0.006317 0.856976 0.024656 0.716667 0.047672 0.787174 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
3 GMM 0.009687 0.881868 0.027140 0.650000 0.052104 0.766516 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
4 HBOS 0.002680 0.993756 0.394366 0.466667 0.427481 0.731534 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
5 IForest 0.710505 0.915668 0.044890 0.783333 0.084914 0.849833 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
6 INNE 0.675775 0.899767 0.034202 0.700000 0.065217 0.800385 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
7 KDE 17.303729 0.924076 0.051579 0.816667 0.097030 0.870641 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
8 KNN 0.030849 0.919497 0.045135 0.750000 0.085147 0.835174 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
9 LODA 0.049980 0.993756 0.394366 0.466667 0.427481 0.731534 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
10 LOF 0.053216 0.743007 0.003282 0.166667 0.006437 0.456283 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
11 MCD 0.006773 0.931069 0.056582 0.816667 0.105832 0.874155 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
12 OCSVM 38.577748 0.919747 0.048902 0.816667 0.092279 0.868466 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
13 PCA 0.003425 0.800949 0.008435 0.333333 0.016454 0.568315 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
14 ROD 3.166535 0.732850 0.000634 0.033333 0.001245 0.384848 False pyod 0.15 28028 [amt] 0.212145 12012 0.004995 None
pyod(*pyod_preprocess10(fraudTrain, 0.25, 0.005))
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params
0 ABOD 0.887434 0.995005 0.000000 0.000000 0.000000 0.500000 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
1 COPOD 0.004493 0.787568 0.020526 0.888889 0.040125 0.837974 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
2 ECOD 0.004322 0.757319 0.016375 0.805556 0.032097 0.781316 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
3 GMM 0.006501 0.753157 0.012311 0.611111 0.024136 0.682490 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
4 HBOS 0.002240 0.994450 0.000000 0.000000 0.000000 0.499721 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
5 IForest 0.485034 0.855280 0.029879 0.888889 0.057814 0.872000 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
6 INNE 0.428517 0.793950 0.016032 0.666667 0.031311 0.730628 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
7 KDE 6.820246 0.868184 0.032720 0.888889 0.063116 0.878484 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
8 KNN 0.016207 0.854170 0.027027 0.805556 0.052299 0.829985 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
9 LODA 0.032871 0.994450 0.000000 0.000000 0.000000 0.499721 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
10 LOF 0.028483 0.578327 0.003636 0.305556 0.007187 0.442626 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
11 MCD 0.005033 0.870681 0.033333 0.888889 0.064257 0.879739 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
12 OCSVM 12.390678 0.862495 0.031403 0.888889 0.060664 0.875626 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
13 PCA 0.002873 0.573054 0.001639 0.138889 0.003239 0.357061 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None
14 ROD 2.206045 0.687942 0.000902 0.055556 0.001775 0.373336 False pyod 0.25 16817 [amt] 0.354998 7207 0.004995 None

pyod_preprocess3: 비율 다 다르게 n

pyod(*pyod_preprocess3(fraudTrain, 10))
pyod(*pyod_preprocess3(fraudTrain, 9))
pyod(*pyod_preprocess3(fraudTrain, 5))
pyod(*pyod_preprocess3(fraudTrain, 4))
pyod(*pyod_preprocess3(fraudTrain, 2))

안됨(Replace has to be set to True when upsampling the population frac > 1.)

pyod(*pyod_preprocess4(fraudTrain, 0.005))

pyod(*pyod_preprocess7(fraudTrain, 0.005,10))

pyod(*pyod_preprocess7(fraudTrain, 0.004,10))

pyod(*pyod_preprocess7(fraudTrain, 0.003,10))

pyod(*pyod_preprocess7(fraudTrain, 0.002,10))

pyod(*pyod_preprocess7(fraudTrain, 0.001,10))

contamination must be in (0, 0.5], got: 0.5~ 오류로 아래 것들 안 됨

pyod(*pyod_preprocess3(fraudTrain, 8))

pyod(*pyod_preprocess3(fraudTrain, 7))

pyod(*pyod_preprocess3(fraudTrain, 6))

pyod(*pyod_preprocess3(fraudTrain, 3))

pyod(*pyod_preprocess3(fraudTrain, 1))

pyod(*pyod_preprocess10(fraudTrain, 0.5, 0.5))

pyod(*pyod_preprocess10(fraudTrain, 0.5, 0.05))

pyod(*pyod_preprocess10(fraudTrain, 0.5, 0.005))

pyod(*pyod_preprocess10(fraudTrain, 0.5, 0.0005))

pyod(*pyod_preprocess10(fraudTrain, 0.7, 0.005))

pyod(*pyod_preprocess10(fraudTrain, 0.6, 0.005))

pyod(*pyod_preprocess10(fraudTrain, 0.4, 0.005))