1
\(f(x) = \lambda e^{-\lambda x} I(x>0)\)
(1)
\(p_1 = P(X>1)\)
—> \(\int_1^\infty \lambda e ^{-\lambda x}I(x>0)=e^{-\lambda}\)
(2)
\(\hat p_1\)의 최대가능도추정량
\(e^{-\lambda}\)
f(x)의 최대가능도추정량
\(L(x) = \lambda^n e^{-\lambda \sum x}\)
\(l(x) = n log \lambda - \lambda \sum x\)
\(l'(x) = \dfrac{n}{\lambda} - \sum x = 0\)
\(\rightarrow n - \hat \lambda \sum x = 0\)
\(\rightarrow \hat \lambda = \dfrac{n}{\sum x} = \dfrac{1}{\bar X}\)
\(e^{-\hat \lambda} = e^{\bar X}\)
(3)
\(\hat p_1\)의 기댓값
\(E(\hat p_1) = E(e^{\bar X}) = e^{E(ln^{e^{\bar X}})} = e^{E(\bar X)}\)
\(E(\bar X) = E(X)\)
\(E(X) = \int_{-\infty}^{\infty} x f(x)dx\)
(4)
\(\hat p_1\)의 점근분포
(5)
$ H_0: = 1 $ 가능도비 검정
2
\(X_i \sim Ber(p)\)이고 \(\sum Y = \bar X\) <- y이게맞나 기억이 잘.
\(\sqrt{n}(\bar Y(1-\bar Y) - p(1-p)) \sim N(0, p(1-p)(1-2p)^2)\)임을 증명
\(\sqrt{n}(g(\hat \theta) - g(\theta_0)) \sim N(0, \dfrac{(g'(\theta))^2}{I(\theta)})\) 델타분포이용
\(g(\theta) = p(1-p)\)
\(g'(\theta) = 1-2p\)
\(I(p) = p(1-p)\)
\(f(x) = p^x(1-p)^{1-x}\)
\(I(p) = E(\dfrac{df(x)}{dp} log f(x))^2\)
\(log f(x) = x log p + (1-x) log (1-p)\)
미분하면 \(\dfrac{x}{p} - \dfrac{1-x}{1-p} = \dfrac{x-p}{p(1-p)}\)
\(I(p) = E(\dfrac{(x-p)^2}{(p(1-p))^2}= \dfrac{Var(X)}{(p(1-p))^2}=\dfrac{1}{p(1-p)}\)
\(\because Var(X) = p(1-p)\)