import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_5(fraudTrain, 10,11406996,0.8)
df_results = try_5(fraudTrain, 10,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 10,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 9,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,11406996,0.7, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.9, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,11406996,0.7, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.917783 | 0.016590 | 0.947368 | 0.032609 | 0.968007 | True | Proposed | 0.131127 | 9009 | amt | 0.505051 | 25980 | 0.001463 | None | 11406996 | 0.8 |
1 | GCN | None | 0.938217 | 0.022547 | 0.973684 | 0.044074 | 0.982845 | True | Proposed | 0.129820 | 9009 | amt | 0.499944 | 25978 | 0.001463 | None | 11406996 | 0.9 |
2 | GCN | None | 0.886999 | 0.012450 | 0.973684 | 0.024585 | 0.960453 | True | Proposed | 0.129633 | 9009 | amt | 0.499278 | 25982 | 0.001463 | None | 11406996 | 0.7 |
3 | GCN | None | 0.941596 | 0.024899 | 0.934783 | 0.048505 | 0.984682 | True | Proposed | 0.120230 | 9009 | amt | 0.500611 | 28885 | 0.001593 | None | 11406996 | 0.9 |
4 | GCN | None | 0.915980 | 0.018661 | 0.867925 | 0.036537 | 0.947152 | True | Proposed | 0.120450 | 9009 | amt | 0.500611 | 28874 | 0.001836 | None | 11406996 | 0.8 |
5 | GCN | None | 0.892921 | 0.011832 | 0.948718 | 0.023373 | 0.958848 | True | Proposed | 0.120417 | 9009 | amt | 0.502054 | 28876 | 0.001351 | None | 11406996 | 0.7 |
6 | GCN | None | 0.940046 | 0.022579 | 0.978261 | 0.044139 | 0.984014 | True | Proposed | 0.109714 | 9009 | amt | 0.500500 | 32508 | 0.001415 | None | 11406996 | 0.9 |
7 | GCN | None | 0.921472 | 0.012408 | 0.864865 | 0.024465 | 0.963446 | True | Proposed | 0.109427 | 9009 | amt | 0.500056 | 32498 | 0.001139 | None | 11406996 | 0.8 |
8 | GCN | None | 0.895498 | 0.011357 | 0.975000 | 0.022453 | 0.960901 | True | Proposed | 0.108611 | 9009 | amt | 0.495948 | 32497 | 0.001231 | None | 11406996 | 0.7 |
9 | GCN | None | 0.947098 | 0.032544 | 0.970588 | 0.062977 | 0.985970 | True | Proposed | 0.098821 | 9009 | amt | 0.498501 | 37125 | 0.001832 | None | 11406996 | 0.9 |
10 | GCN | None | 0.911643 | 0.012940 | 1.000000 | 0.025550 | 0.980952 | True | Proposed | 0.099066 | 9009 | amt | 0.502498 | 37122 | 0.001158 | None | 11406996 | 0.8 |
11 | GCN | None | 0.894713 | 0.013640 | 0.931034 | 0.026886 | 0.969827 | True | Proposed | 0.098448 | 9009 | amt | 0.497724 | 37127 | 0.001562 | None | 11406996 | 0.7 |
= try_5(fraudTrain, 10,1e+7,0.8)
df_results = try_5(fraudTrain, 9,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 8,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 7,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 6,1e+7,0.8, prev_results=df_results)
df_results = try_5(fraudTrain, 5,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.919618 | 0.016957 | 0.972973 | 0.033333 | 0.978765 | True | Proposed | 0.129770 | 9009 | amt | 0.499833 | 25976 | 0.001424 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.922709 | 0.014153 | 0.914286 | 0.027875 | 0.946846 | True | Proposed | 0.118827 | 9009 | amt | 0.495837 | 28878 | 0.001212 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.913900 | 0.017907 | 0.980769 | 0.035172 | 0.965836 | True | Proposed | 0.109695 | 9009 | amt | 0.499611 | 32497 | 0.001600 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.918746 | 0.013098 | 0.952381 | 0.025840 | 0.972711 | True | Proposed | 0.098272 | 9009 | amt | 0.498501 | 37118 | 0.001132 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.926632 | 0.020352 | 0.985075 | 0.039879 | 0.980303 | True | Proposed | 0.086689 | 9009 | amt | 0.496059 | 43316 | 0.001547 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.926365 | 0.017738 | 0.932432 | 0.034813 | 0.974309 | True | Proposed | 0.074957 | 9009 | amt | 0.499056 | 51959 | 0.001424 | None | 10000000.0 | 0.8 |
= try_7(fraudTrain, 0.9, 10,1e+7,0.8)
df_results = try_7(fraudTrain, 0.8, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.7, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.6, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.4, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.3, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.2, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.1, 10,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.818217 | 0.006495 | 1.000000 | 0.012906 | 0.964933 | True | Proposed | 0.145931 | 5004 | amt | 0.900480 | 26086 | 0.001188 | None | 10000000.0 | 0.8 |
1 | GCN | None | 0.881583 | 0.011848 | 0.973684 | 0.023410 | 0.965544 | True | Proposed | 0.143569 | 5630 | amt | 0.801599 | 26069 | 0.001458 | None | 10000000.0 | 0.8 |
2 | GCN | None | 0.896080 | 0.014925 | 0.976190 | 0.029401 | 0.974247 | True | Proposed | 0.139946 | 6435 | amt | 0.699922 | 26049 | 0.001612 | None | 10000000.0 | 0.8 |
3 | GCN | None | 0.909559 | 0.010531 | 0.862069 | 0.020807 | 0.969194 | True | Proposed | 0.135187 | 7507 | amt | 0.599840 | 26017 | 0.001115 | None | 10000000.0 | 0.8 |
4 | GCN | None | 0.933647 | 0.022740 | 0.975610 | 0.044444 | 0.981265 | True | Proposed | 0.122906 | 11261 | amt | 0.402185 | 25922 | 0.001582 | None | 10000000.0 | 0.8 |
5 | GCN | None | 0.660591 | 0.005782 | 1.000000 | 0.011497 | 0.981600 | True | Proposed | 0.111030 | 15015 | amt | 0.298701 | 25839 | 0.001974 | None | 10000000.0 | 0.8 |
6 | GCN | None | 0.956188 | 0.032787 | 0.926829 | 0.063333 | 0.984209 | True | Proposed | 0.094651 | 22522 | amt | 0.200648 | 25655 | 0.001598 | None | 10000000.0 | 0.8 |
7 | GCN | None | 0.978864 | 0.049180 | 0.771429 | 0.092466 | 0.986971 | True | Proposed | 0.065230 | 45045 | amt | 0.100766 | 25076 | 0.001396 | None | 10000000.0 | 0.8 |
= try_7(fraudTrain, 0.09, 10,1e+7,0.8)
df_results = try_7(fraudTrain, 0.08, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.07, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.06, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.04, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.03, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.02, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.01, 10,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
이거 커널 죽음
= try_7(fraudTrain, 0.009, 10,1e+7,0.8)
df_results = try_7(fraudTrain, 0.008, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.007, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.006, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.004, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.003, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.002, 10,1e+7,0.8, prev_results=df_results)
df_results = try_7(fraudTrain, 0.001, 10,1e+7,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results