#pip install autogluon
해당 자료는 전북대학교 최규빈 교수님 2023학년도 2학기 빅데이터분석특강 자료임
02wk-008: 타이타닉, Autogluon (best_quality)
최규빈
2023-09-12
1. 강의영상
https://youtu.be/playlist?list=PLQqh36zP38-x6USW3HM9Lm-B19o9qrm19&si=EFy8hdlgDJ-LUFHi
2. Import
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
/kaggle/input/titanic/train.csv
/kaggle/input/titanic/test.csv
/kaggle/input/titanic/gender_submission.csv
from autogluon.tabular import TabularDataset, TabularPredictor
3. 분석의 절차
A. 데이터
-
비유: 문제를 받아오는 과정으로 비유할 수 있다.
= TabularDataset("~/Desktop/titanic/train.csv")
tr = TabularDataset("~/Desktop/titanic/test.csv") tst
Loaded data from: ~/Desktop/titanic/train.csv | Columns = 12 / 12 | Rows = 891 -> 891
Loaded data from: ~/Desktop/titanic/test.csv | Columns = 11 / 11 | Rows = 418 -> 418
tst
PassengerId | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 892 | 3 | Kelly, Mr. James | male | 34.5 | 0 | 0 | 330911 | 7.8292 | NaN | Q |
1 | 893 | 3 | Wilkes, Mrs. James (Ellen Needs) | female | 47.0 | 1 | 0 | 363272 | 7.0000 | NaN | S |
2 | 894 | 2 | Myles, Mr. Thomas Francis | male | 62.0 | 0 | 0 | 240276 | 9.6875 | NaN | Q |
3 | 895 | 3 | Wirz, Mr. Albert | male | 27.0 | 0 | 0 | 315154 | 8.6625 | NaN | S |
4 | 896 | 3 | Hirvonen, Mrs. Alexander (Helga E Lindqvist) | female | 22.0 | 1 | 1 | 3101298 | 12.2875 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
413 | 1305 | 3 | Spector, Mr. Woolf | male | NaN | 0 | 0 | A.5. 3236 | 8.0500 | NaN | S |
414 | 1306 | 1 | Oliva y Ocana, Dona. Fermina | female | 39.0 | 0 | 0 | PC 17758 | 108.9000 | C105 | C |
415 | 1307 | 3 | Saether, Mr. Simon Sivertsen | male | 38.5 | 0 | 0 | SOTON/O.Q. 3101262 | 7.2500 | NaN | S |
416 | 1308 | 3 | Ware, Mr. Frederick | male | NaN | 0 | 0 | 359309 | 8.0500 | NaN | S |
417 | 1309 | 3 | Peter, Master. Michael J | male | NaN | 1 | 1 | 2668 | 22.3583 | NaN | C |
418 rows × 11 columns
B. Predictor 생성
-
비유: 문제를 풀 학생을 생성하는 과정으로 비유할 수 있다.
= TabularPredictor("Survived") predictr
No path specified. Models will be saved in: "AutogluonModels/ag-20230917_141828/"
C. 적합(fit)
-
비유: 학생이 공부를 하는 과정으로 비유할 수 있다.
-
학습
='best_quality') # 학생(predictr)에게 문제(tr)를 줘서 학습을 시킴(predictr.fit()) predictr.fit(tr,presets
Presets specified: ['best_quality']
Stack configuration (auto_stack=True): num_stack_levels=0, num_bag_folds=8, num_bag_sets=1
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20230917_141828/"
AutoGluon Version: 0.8.2
Python Version: 3.8.18
Operating System: Linux
Platform Machine: x86_64
Platform Version: #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2
Disk Space Avail: 775.46 GB / 982.82 GB (78.9%)
Train Data Rows: 891
Train Data Columns: 11
Label Column: Survived
Preprocessing data ...
AutoGluon infers your prediction problem is: 'binary' (because only two unique label-values observed).
2 unique label values: [0, 1]
If 'binary' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = 1, class 0 = 0
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 37750.16 MB
Train Data (Original) Memory Usage: 0.31 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Note: Converting 1 features to boolean dtype as they only contain 2 unique values.
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Fitting CategoryFeatureGenerator...
Fitting CategoryMemoryMinimizeFeatureGenerator...
Fitting TextSpecialFeatureGenerator...
Fitting BinnedFeatureGenerator...
Fitting DropDuplicatesFeatureGenerator...
Fitting TextNgramFeatureGenerator...
Fitting CountVectorizer for text features: ['Name']
CountVectorizer fit with vocabulary size = 8
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Stage 5 Generators:
Fitting DropDuplicatesFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('float', []) : 2 | ['Age', 'Fare']
('int', []) : 4 | ['PassengerId', 'Pclass', 'SibSp', 'Parch']
('object', []) : 4 | ['Sex', 'Ticket', 'Cabin', 'Embarked']
('object', ['text']) : 1 | ['Name']
Types of features in processed data (raw dtype, special dtypes):
('category', []) : 3 | ['Ticket', 'Cabin', 'Embarked']
('float', []) : 2 | ['Age', 'Fare']
('int', []) : 4 | ['PassengerId', 'Pclass', 'SibSp', 'Parch']
('int', ['binned', 'text_special']) : 9 | ['Name.char_count', 'Name.word_count', 'Name.capital_ratio', 'Name.lower_ratio', 'Name.special_ratio', ...]
('int', ['bool']) : 1 | ['Sex']
('int', ['text_ngram']) : 9 | ['__nlp__.henry', '__nlp__.john', '__nlp__.master', '__nlp__.miss', '__nlp__.mr', ...]
0.1s = Fit runtime
11 features in original data used to generate 28 features in processed data.
Train Data (Processed) Memory Usage: 0.07 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.16s ...
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
User-specified model hyperparameters to be fit:
{
'NN_TORCH': {},
'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],
'CAT': {},
'XGB': {},
'FASTAI': {},
'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif_BAG_L1 ...
Exception ignored on calling ctypes callback function: <function _ThreadpoolInfo._find_modules_with_dl_iterate_phdr.<locals>.match_module_callback at 0x7f20705933a0>
Traceback (most recent call last):
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 400, in match_module_callback
self._make_module_from_path(filepath)
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 515, in _make_module_from_path
module = module_class(filepath, prefix, user_api, internal_api)
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 606, in __init__
self.version = self.get_version()
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 646, in get_version
config = get_config().split()
AttributeError: 'NoneType' object has no attribute 'split'
0.6308 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: KNeighborsDist_BAG_L1 ...
Exception ignored on calling ctypes callback function: <function _ThreadpoolInfo._find_modules_with_dl_iterate_phdr.<locals>.match_module_callback at 0x7f20705e85e0>
Traceback (most recent call last):
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 400, in match_module_callback
self._make_module_from_path(filepath)
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 515, in _make_module_from_path
module = module_class(filepath, prefix, user_api, internal_api)
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 606, in __init__
self.version = self.get_version()
File "/home/coco/anaconda3/envs/py38/lib/python3.8/site-packages/threadpoolctl.py", line 646, in get_version
config = get_config().split()
AttributeError: 'NoneType' object has no attribute 'split'
0.6364 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMXT_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.835 = Validation score (accuracy)
0.64s = Training runtime
0.02s = Validation runtime
Fitting model: LightGBM_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8406 = Validation score (accuracy)
0.69s = Training runtime
0.02s = Validation runtime
Fitting model: RandomForestGini_BAG_L1 ...
0.8373 = Validation score (accuracy)
0.25s = Training runtime
0.06s = Validation runtime
Fitting model: RandomForestEntr_BAG_L1 ...
0.8361 = Validation score (accuracy)
0.26s = Training runtime
0.06s = Validation runtime
Fitting model: CatBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8608 = Validation score (accuracy)
1.7s = Training runtime
0.02s = Validation runtime
Fitting model: ExtraTreesGini_BAG_L1 ...
0.8294 = Validation score (accuracy)
0.26s = Training runtime
0.06s = Validation runtime
Fitting model: ExtraTreesEntr_BAG_L1 ...
0.8328 = Validation score (accuracy)
0.25s = Training runtime
0.06s = Validation runtime
Fitting model: NeuralNetFastAI_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.853 = Validation score (accuracy)
2.19s = Training runtime
0.07s = Validation runtime
Fitting model: XGBoost_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8406 = Validation score (accuracy)
0.55s = Training runtime
0.04s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8462 = Validation score (accuracy)
3.98s = Training runtime
0.09s = Validation runtime
Fitting model: LightGBMLarge_BAG_L1 ...
Fitting 8 child models (S1F1 - S1F8) | Fitting with ParallelLocalFoldFittingStrategy
0.8406 = Validation score (accuracy)
1.04s = Training runtime
0.03s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.8608 = Validation score (accuracy)
0.5s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 19.49s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20230917_141828/")
<autogluon.tabular.predictor.predictor.TabularPredictor at 0x7f212cb60f40>
-
리더보드확인 (모의고사채점)
predictr.leaderboard()
model score_val pred_time_val fit_time pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order
0 CatBoost_BAG_L1 0.860831 0.023981 1.700775 0.023981 1.700775 1 True 7
1 WeightedEnsemble_L2 0.860831 0.025379 2.204065 0.001398 0.503290 2 True 14
2 NeuralNetFastAI_BAG_L1 0.852974 0.067810 2.190649 0.067810 2.190649 1 True 10
3 NeuralNetTorch_BAG_L1 0.846240 0.086196 3.984127 0.086196 3.984127 1 True 12
4 LightGBM_BAG_L1 0.840629 0.023935 0.687209 0.023935 0.687209 1 True 4
5 LightGBMLarge_BAG_L1 0.840629 0.025161 1.040782 0.025161 1.040782 1 True 13
6 XGBoost_BAG_L1 0.840629 0.039286 0.545162 0.039286 0.545162 1 True 11
7 RandomForestGini_BAG_L1 0.837262 0.058148 0.252888 0.058148 0.252888 1 True 5
8 RandomForestEntr_BAG_L1 0.836139 0.058385 0.259539 0.058385 0.259539 1 True 6
9 LightGBMXT_BAG_L1 0.835017 0.022836 0.638991 0.022836 0.638991 1 True 3
10 ExtraTreesEntr_BAG_L1 0.832772 0.056459 0.251367 0.056459 0.251367 1 True 9
11 ExtraTreesGini_BAG_L1 0.829405 0.058829 0.257241 0.058829 0.257241 1 True 8
12 KNeighborsDist_BAG_L1 0.636364 0.012997 0.003672 0.012997 0.003672 1 True 2
13 KNeighborsUnif_BAG_L1 0.630752 0.011647 0.003759 0.011647 0.003759 1 True 1
model | score_val | pred_time_val | fit_time | pred_time_val_marginal | fit_time_marginal | stack_level | can_infer | fit_order | |
---|---|---|---|---|---|---|---|---|---|
0 | CatBoost_BAG_L1 | 0.860831 | 0.023981 | 1.700775 | 0.023981 | 1.700775 | 1 | True | 7 |
1 | WeightedEnsemble_L2 | 0.860831 | 0.025379 | 2.204065 | 0.001398 | 0.503290 | 2 | True | 14 |
2 | NeuralNetFastAI_BAG_L1 | 0.852974 | 0.067810 | 2.190649 | 0.067810 | 2.190649 | 1 | True | 10 |
3 | NeuralNetTorch_BAG_L1 | 0.846240 | 0.086196 | 3.984127 | 0.086196 | 3.984127 | 1 | True | 12 |
4 | LightGBM_BAG_L1 | 0.840629 | 0.023935 | 0.687209 | 0.023935 | 0.687209 | 1 | True | 4 |
5 | LightGBMLarge_BAG_L1 | 0.840629 | 0.025161 | 1.040782 | 0.025161 | 1.040782 | 1 | True | 13 |
6 | XGBoost_BAG_L1 | 0.840629 | 0.039286 | 0.545162 | 0.039286 | 0.545162 | 1 | True | 11 |
7 | RandomForestGini_BAG_L1 | 0.837262 | 0.058148 | 0.252888 | 0.058148 | 0.252888 | 1 | True | 5 |
8 | RandomForestEntr_BAG_L1 | 0.836139 | 0.058385 | 0.259539 | 0.058385 | 0.259539 | 1 | True | 6 |
9 | LightGBMXT_BAG_L1 | 0.835017 | 0.022836 | 0.638991 | 0.022836 | 0.638991 | 1 | True | 3 |
10 | ExtraTreesEntr_BAG_L1 | 0.832772 | 0.056459 | 0.251367 | 0.056459 | 0.251367 | 1 | True | 9 |
11 | ExtraTreesGini_BAG_L1 | 0.829405 | 0.058829 | 0.257241 | 0.058829 | 0.257241 | 1 | True | 8 |
12 | KNeighborsDist_BAG_L1 | 0.636364 | 0.012997 | 0.003672 | 0.012997 | 0.003672 | 1 | True | 2 |
13 | KNeighborsUnif_BAG_L1 | 0.630752 | 0.011647 | 0.003759 | 0.011647 | 0.003759 | 1 | True | 1 |
D. 예측 (predict)
-
비유: 학습이후에 문제를 푸는 과정으로 비유할 수 있다.
-
training set 을 풀어봄 (predict) \(\to\) 점수 확인
== predictr.predict(tr)).mean() (tr.Survived
0.898989898989899
-
test set 을 풀어봄 (predict) \(\to\) 점수 확인 하러 캐글에 결과제출
= predictr.predict(tst)).loc[:,['PassengerId','Survived']]\
tst.assign(Survived "autogluon(best_quality)_submission.csv",index=False) .to_csv(
3. 숙제
-
캐글에 제출한 결과를 캡쳐하여 LMS에 제출